Background: The recent COVID-19 pandemic has highlighted the weaknesses of health care systems around the world. In the effort to improve the monitoring of cases admitted to emergency departments, it has become increasingly necessary to adopt new innovative technological solutions in clinical practice. Currently, the continuous monitoring of vital signs is only performed in patients admitted to the intensive care unit.

Objective: The study aimed to develop a smart system that will dynamically prioritize patients through the continuous monitoring of vital signs using a wearable biosensor device and recording of meaningful clinical records and estimate the likelihood of deterioration of each case using artificial intelligence models.

Methods: The data for the study were collected from the emergency department and COVID-19 inpatient unit of the Hippokration General Hospital of Thessaloniki. The study was carried out in the framework of the COVID-X H2020 project, which was funded by the European Union. For the training of the neural network, data collection was performed from COVID-19 cases hospitalized in the respective unit. A wearable biosensor device was placed on the wrist of each patient, which recorded the primary characteristics of the visual signal related to breathing assessment.

Results: A total of 157 adult patients diagnosed with COVID-19 were recruited. Lasso penalty function was used for selecting 18 out of 48 predictors and 2 random forest-based models were implemented for comparison. The high overall performance was maintained, if not improved, by feature selection, with random forest achieving accuracies of 80.9% and 82.1% when trained using all predictors and a subset of them, respectively. Preliminary results, although affected by pandemic limitations and restrictions, were promising regarding breathing pattern recognition.

Conclusions: This study represents a novel approach that involves the use of machine learning methods and Edge artificial intelligence to assist the prioritization and continuous monitoring procedures of patients with COVID-19 in health departments. Although initial results appear to be promising, further studies are required to examine its actual effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645417PMC
http://dx.doi.org/10.2196/36933DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
continuous monitoring
12
covid-19 cases
8
emergency departments
8
monitoring vital
8
vital signs
8
wearable biosensor
8
biosensor device
8
covid-19
6
study
5

Similar Publications

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation.

View Article and Find Full Text PDF

Background: Medical narratives are fundamental to the correct identification of a patient's health condition. This is not only because it describes the patient's situation. It also contains relevant information about the patient's context and health state evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!