AI Article Synopsis

  • The study explores how a low-nutrient environment affects endometriosis, particularly in the stromal cells from ovarian endometriomas compared to normal endometrial cells.
  • Researchers found that stromal cells from endometriosis proliferated more aggressively under low-nutrient conditions and showed increased levels of various factors that can worsen the disease.
  • The findings suggest that endometriosis develops and worsens through mechanisms related to metabolism and cell survival, particularly involving the protein PGC-1α, which plays a role in inflammation and estrogen production.

Article Abstract

Although nutrient status plays an important role in cell metabolism, its significance in endometriosis is obscure. Herein, we investigated the effects of a low-nutrient microenvironment on endometriosis. Stromal cells (SCs) from ovarian endometrioma (OESCs) or normal endometrium without endometriosis (NESCs) were isolated and cultured. A low-nutrient microenvironment was replicated by replacing the culture medium with Hank's balanced salt solution. OESC and NESC proliferation under the low-nutrient condition was measured. The expression of exacerbating factors in endometriosis under the low-nutrient condition was examined at the mRNA and protein levels. OESCs showed higher proliferation than NESCs under the low-nutrient condition. In OESCs, the low-nutrient condition upregulated the mRNA expression of vascular endothelial growth factor (VEGF), interleukin-6 and -8, aromatase, Bcl-2, and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and downregulated that of BAX and induced transcription of PI.3, PII, and exon II. Western blotting revealed elevated VEGF and PGC-1α expression under the low-nutrient condition in OESCs. These changes coincided with the elevated expression of PGC-1α, which was reduced at the mRNA level upon nutrient status rescue. Endometriosis is exacerbated by altered angiogenesis, inflammation, anti-apoptosis, and local estrogen production while trying to survive under a low-nutrient microenvironment; it may be attributed to PGC-1α-mediated metabolic mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-022-01089-5DOI Listing

Publication Analysis

Top Keywords

low-nutrient condition
20
low-nutrient microenvironment
12
low-nutrient
9
pgc-1α expression
8
stromal cells
8
nutrient status
8
condition oescs
8
endometriosis
6
expression
5
condition
5

Similar Publications

Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population.

View Article and Find Full Text PDF

Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea.

View Article and Find Full Text PDF

Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques.

Int J Mol Sci

November 2024

The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

High-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions.

View Article and Find Full Text PDF

Serpentine soils are characterized as a unique environment with low nutrient availability and high heavy metal concentrations, often hostile to many plant species. Even though these unfavorable conditions hinder the growth of various plants, particular vegetation with different adaptive mechanisms thrives undisturbed. One of the main contributors to serpentine adaptation represents serpentine bacteria with plant growth-promoting properties that assemble delicate interactions with serpentine plants.

View Article and Find Full Text PDF

Introduction: It is desirable to rehabilitate desert ecosystems with a selection of native plant species that render ecosystem services and yield natural products for creating a high-value industry, e.g., pharmaceuticals or cosmetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!