Sensing of Fluidic Features Using Colloidal Microswarms.

ACS Nano

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, China.

Published: October 2022

Sensing of key parameters in fluidic environments has attracted extensive attention because the physical features of body fluids could be used for point-of-care disease diagnosis. Although various sensing methods have been investigated, effective sensing strategies of microenvironments remains a major challenge. In this paper, we propose an approach that can realize sensing of fluidic viscosity and ionic strength using microswarms formed by simple colloidal nanoparticles. The influences of fluidic ionic strength and viscosity on two swarm behaviors are analyzed (i.e., the spreading of circular vortex-like swarms and the elongation of elliptical swarms). The data models for quantifying the fluidic viscosity and ionic strength are obtained from experiments, and the fluidic features can be sensed successfully using the swarm behaviors. Furthermore, we demonstrate that the microswarms have the capability of passing through tortuous and narrow microchannels for sensing. Continuous sensing of different fluidic environments using swarms is also realized. Finally, the sensing of viscosity and ionic strength of porcine whole blood is presented, which also validates the feasibility of the sensing strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c05281DOI Listing

Publication Analysis

Top Keywords

ionic strength
16
sensing fluidic
12
viscosity ionic
12
sensing
9
fluidic features
8
fluidic environments
8
fluidic viscosity
8
swarm behaviors
8
fluidic
6
features colloidal
4

Similar Publications

Solid-state polymer electrolytes (SPEs) have emerged as prominent candidates for solid-state sodium metal batteries (SMBs) due to their enhanced flexibility and reduced interfacial resistance. However, their performance is limited by poor Na+ conductivity at room temperature, disordered ion transport properties and unstable interfaces. Herein, a three-dimensional (3D) interconnected copper metal organic framework (Cu-MOF) on polyacrylonitrile (PAN) fibers is introduced into polyethylene oxide (PEO)-based SPEs to construct a composite electrolyte (PPNM).

View Article and Find Full Text PDF

Enhancing Microdomain Consistency in Polymer Electrolytes towards Sustainable Lithium Batteries.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.

View Article and Find Full Text PDF

Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).

View Article and Find Full Text PDF

Enhancing salt tolerance genetically through defining the genetic and physiological mechanisms intergenerational and transgenerational stress memory that contributes to sustainable agriculture by reducing the reliance on external inputs such as irrigation and improving the adaptability of barley to changing climate conditions. Salinity stress poses a substantial challenge to barley production worldwide, adversely affecting crop yield, quality, and agricultural sustainability. To address this, the present study utilized a genome-wide association san (GWAS) to identify genetic associations underlying intergenerational and transgenerational stress memory in response to salinity in a diverse panel of 138 barley accessions.

View Article and Find Full Text PDF

The motility of biological molecular motors has typically been analyzed by in vitro reconstitution systems using motors isolated and purified from organs or expressed in cultured cells. The behavior of biomolecular motors within cells has frequently been reported to be inconsistent with that observed in reconstituted systems in vitro. Although this discrepancy has been attributed to differences in ionic strength and intracellular crowding, understanding how such parameters affect the motility of motors remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!