Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photodynamic therapy (PDT) is a promising noninvasive treatment that has drawn great attention. However, the hypoxic environment in tumors seriously limits the therapeutic effect of oxygen-dependent chemicals and PDT. Herein, a versatile nanocomposite DF-BODIPY@ZIF-8 with oxygen-generating ability was developed based on zeolitic imidazolate framework-8 (ZIF-8) by loading the near-infrared photosensitizer DF-BODIPY to overcome hypoxia-induced drug resistance in cancer therapy. ZIF-8 can catalyze the decomposition of hydrogen peroxide in tumors and increase the dissolved oxygen concentration, resulting in a significant improvement in PDT efficacy. Additionally, we found that enhancing the electronegativity of substituents can effectively reduce the energy level difference (Δ) between the minimum singlet state (S) and the lowest triplet state (T), leading to the enhancement of the singlet oxygen quantum yield. In vitro experiments suggested that DF-BODIPY@ZIF-8 indeed had a higher singlet oxygen quantum yield and better tumor cell phototoxicity than free DF-BODIPY. In vivo experiments also demonstrated that DF-BODIPY@ZIF-8 could effectively eliminate 4T1 tumors under light irradiation. Thus, we conclude that increasing the electronegativity of substituents and introducing a ZIF-8 material can effectively improve the singlet oxygen quantum yield and overcome the hypoxia limitations for high-efficiency PDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!