Water homeostasis is tightly regulated by the kidneys via the process of urine concentration. During reduced water intake, the antidiuretic hormone arginine vasopressin (AVP) binds to the vasopressin receptor type II (V2R) in the kidney to enhance countercurrent multiplication and medullary osmolality, and increase water reabsorption via aquaporin-2 (AQP2) water channels. The importance of this AVP, V2R, and AQP2 axis is highlighted by low urine osmolality and polyuria in people with various water balance disorders, including nephrogenic diabetes insipidus (NDI). ELF5 and nuclear factor of activated T cells 5 (NFAT5) are two transcription factors proposed to regulate Aqp2 expression, but their role is poorly defined. Here we generated two novel mouse lines with principal cell (PC)-specific deletion of ELF5 or NFAT5 and phenotyped them in respect to renal water handling. ELF5-deficient mice (ELF5 ) had a very mild phenotype, with no clear differences in AQP2 abundance, and mild differences in renal water handling and maximal urinary concentrating capacity. In contrast, NFAT5 (NFAT5 ) mice had significantly higher water intake and their 24 h urine volume was almost 10-fold greater than controls. After challenging with dDAVP or 8 h water restriction, NFAT5 mice were unable to concentrate their urine, demonstrating that they suffer from NDI. The abundance of AQP2, other AQPs, and the urea transporter UT-A1 were greatly decreased in NFAT5 mice. In conclusion, NFAT5 is a major regulator of not only Aqp2 gene transcription, but also other genes important for water homeostasis and its absence leads to the development of NDI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202200856R | DOI Listing |
Epilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized.
View Article and Find Full Text PDFWorld J Diabetes
December 2024
School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang Province, China.
Background: Shikonin is a natural remedy that is effective at treating diabetic wounds. NFAT5 is a potential therapeutic target for diabetes, and mitochondrial function is essential for wound healing. However, the relationship among Shikonin, NFAT5, and mitochondrial function has not been thoroughly studied.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea.
Int J Biol Macromol
December 2024
Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!