Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Determination of proximate characteristics can be achieved using conventional analyses methods that require a certain amount of time. In cement factories, refuse-derived fuel (RDF) is continuously fed to a kiln by a conveyor belt, so even if an inappropriate proximate characteristic is determined, it would be too late to prevent the feeding of RDF to the kiln. To overcome this problem, there is a need for instant measurement of the proximate characteristics (moisture, volatile matter, ash) that enables the feeding to be stopped. In such cases, the deep learning (DL) is a useful method based on the prediction of proximate characteristics. Therefore, in this study, the aim is to estimate the mentioned parameters developed by near-infrared spectroscopy (NIR) combined with deep learning models. For this purpose, the spectrographic measurements taken from RDF samples with an NIR spectrometer, and the results of proximate analysis in a laboratory, were used together as a dataset. A fully convolutional neural network (FCNN) and ResNet were used as a network, and they were trained using images of RDF samples and proximate analysis values. The FCNN model was more successful in prediction studies. According to the FCNN model, the results show that the models in the study can predict the moisture, ash, and volatile matter content of RDF with satisfactory R values between 0.979, 0.983, and 0.952.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23272-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!