Energy conservation is a clear function of torpor. Although many studies imply that torpor is also a water-saving strategy, the experimental evidence linking water availability with torpor is inconclusive. We tested the relative roles of water and energy shortages in driving torpor, using the Siberian hamster Phodopus sungorus as a model species. To account for the seasonal development of spontaneous heterothermy, we used male hamsters acclimated to short (8L:16D, SP; n = 40) and long (16L:8D, LP; n = 36) photoperiods. We continuously measured body temperature (T) during consecutive 32 h of complete removal of water, food, or both, separated by 7.5 d recovery periods. We predicted that all deprivation types would increase the frequency of spontaneous torpor in SP, and induce torpor in LP-acclimated hamsters. Individuals underwent each deprivation type twice in random orders. Food and water deprivation did not induce torpor in LP-acclimated P. sungorus. Patterns of torpor expression varied among deprivation types in SP individuals. Torpor frequency was significantly lower, but bouts were ∼2 h longer and 2.5 °C deeper, during water deprivation compared to food and food-and-water deprivation. Heterothermic responses to all deprivation types were repeatable among individuals. Different torpor patterns during water and food deprivation suggest that water and energy shortages are distinct physiological challenges. Deeper and longer bouts during water deprivation likely led to higher energy and water savings, while shorter and shallower bouts during fasting may reflect a trade-off between energy conservation and food-seeking activity. The lack of a difference between food- and food-and-water-deprived hamsters suggests a higher sensitivity to food than water shortage. This supports the traditional view that energy conservation is the major function of torpor, but suggests that water shortages may also modulate torpor use. The high repeatability of thermoregulatory responses to resource deprivation suggests that these may be heritable traits subject to natural selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2022.103321 | DOI Listing |
Proc Biol Sci
January 2025
Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.
Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.
View Article and Find Full Text PDFCommun Biol
January 2025
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.
Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.
View Article and Find Full Text PDFCells
December 2024
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
Little brown bats () cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms.
View Article and Find Full Text PDFFront Neurosci
December 2024
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!