Is there a halo-enzymopathy in Parkinson's disease?

Neurologia (Engl Ed)

Laboratorio de Neurofisiología y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain. Electronic address:

Published: October 2022

Laboratory studies identified changes in the metabolism of halogens in the serum and cerebrospinal fluid (CSF) of patients with Parkinson's disease, which indicates the presence of "accelerated self-halogenation" of CSF and/or an increase in haloperoxidases, specifically serum thyroperoxidase and CSF lactoperoxidase. Furthermore, an excess of some halogenated derivatives, such as advanced oxygenation protein products (AOPP), has been detected in the CSF and serum. "Accelerated self-halogenation" and increased levels of haloperoxidases and AOPP proteins indicate that halogenative stress is present in Parkinson's disease. In addition, 3-iodo-L-tyrosine, a halogenated derivative, shows "parkinsonian" toxicity in experimental models, since it has been observed to induce α-synuclein aggregation and damage to dopaminergic neurons in the mouse brain and intestine. The hypothesis is that patients with Parkinson's disease display halogenative stress related to a haloenzymatic alteration of the synthesis or degradation of oxyacid of halogens and their halogenated derivatives. This halogenative stress would be related to nervous system damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nrleng.2018.12.017DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
halogenative stress
12
patients parkinson's
8
"accelerated self-halogenation"
8
halogenated derivatives
8
halo-enzymopathy parkinson's
4
parkinson's disease?
4
disease? laboratory
4
laboratory studies
4
studies identified
4

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

Introduction: Cognitive symptoms are common in Parkinson's Disease (PD), and digital interventions like telerehabilitation other an accessible way to manage these symptoms. This study aimed to assess the effectiveness of a Home-Based Computerized Cognitive Training (HB-CCT) program in individuals with PD using a pilot randomized cross-over design.

Methods: Twenty-five participants (mean age 69.

View Article and Find Full Text PDF

Background: Longitudinal studies investigating cognitive function changes in patients with progressive supranuclear palsy (PSP) are limited. The variability of cognitive impairment across clinical subtypes of PSP remains unclear.

Objective: This study aimed to compare the longitudinal changes in cognitive function between patients with PSP and Parkinson's disease (PD) and to assess differences in cognitive impairment among PSP subtypes.

View Article and Find Full Text PDF

Background: There remains a significant gap in systematic research on healthcare utilization behaviors and the influencing factors for patients with Parkinson's disease (PD), particularly those in late stages.

Methods: PD patients in late stage (Hoehn and Yahr (HY) stages 4 and 5) and their caregivers from Seoul National University Hospital Movement Disorders Clinic participated. A total of 103 respondents completed a questionnaire covering medical utilization behaviors, perceptions of face-to-face and telemedicine consultations, and additional medical service needs.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!