Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhqr.2022.09.004 | DOI Listing |
Sensors (Basel)
December 2024
LAPLACE Laboratory-UMR5213, National Polytechnic Institute of Toulouse, 31077 Toulouse, France.
This paper introduces a novel methodology for evaluating communication performance in rotating electric machines using Received Signal Strength Indication (RSSI) measurements coupled with artificial intelligence. The proposed approach focuses on assessing the quality of wireless signals in the complex, dynamic environment inside these machines, where factors like reflections, metallic surfaces, and rotational movements can significantly impact communication. RSSI is used as a key parameter to monitor real-time signal behavior, enabling a detailed analysis of communication reliability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510630, China.
Real-time online monitoring of track deformation during railway construction is crucial for ensuring the safe operation of trains. However, existing monitoring technologies struggle to effectively monitor both static and dynamic events, often resulting in high false alarm rates. This paper presents a monitoring technology for track deformation during railway construction based on dynamic Brillouin optical time-domain reflectometry (Dy-BOTDR), which effectively meets requirements in the monitoring of both static and dynamic events of track deformation.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B2K3, Canada.
Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and UAV mobility and shadowing adversely impact latency and throughput.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electronic and Electrical Engineering, Hongik University, Seoul 04066, Republic of Korea.
We analyze the communication link of an LEO satellite considering interference sources moving along various parabola-curved paths. In this situation, the location of the ground station, airborne interference source paths, and the satellite's trajectory were expressed in the East-North-Up (ENU) coordinate system. The airborne interference source path is designed using a parabola equation with a directrix parallel to the satellite's trajectory to analyze the interference situation for more diverse interference source paths, rather than using a straight path.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
In this paper, we propose a Proof-of-Location (PoL)-based location verification scheme for mitigating Sybil attacks in vehicular ad hoc networks (VANETs). For this purpose, we employ smart contracts for storing the location information of the vehicles. This smart contract is maintained by Road Side Units (RSUs) and acts as a ground truth for verifying the position information of the neighboring vehicles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!