Ethnopharmacological Relevance: Zingiberis Rhizoma (ZR) and Zingiberis Rhizoma Carbonisata (ZRC), as two forms of ginger-based herbal drugs used in China for at least 2000 years, have been recorded in Chinese Pharmacopoeia and applied for specific indications in traditional Chinese medicine (TCM).
Aim Of The Study: The present study aimed to explore the underlying therapeutic and processing mechanism of the absorbed components of ZR and ZRC on deficiency-cold and hemorrhagic syndrome (DCHS) using network pharmacological technique combined with pharmacokinetics strategy.
Materials And Methods: In this study, a rapid and sensitive approach was conceived to simultaneously determine the seven components (zingiberone, 6-gingerol, 8-gingerol, 6-shogaol, 6-paradol, diacetyl-6-gingerol and 10-gingerol) in rat serum by HPLC-DAD-MS. The network pharmacological technique was employed to evaluate the effect of the absorbed components of ZR and ZRC on DCHS. Also, the vitro experiments were carried out to validate the functions of the seven compounds on coagulation and other major haematological effects.
Results: The values of intra-assay and inter-assay precision were determined to be less than 7.44%, with an accuracy value ranging from 83.64% to 107.99%. Analysis of rat plasma revealed that the extraction recoveries and matrix effects of the seven analytes were >85.76%. The method for validation following oral administration of ZR and ZRC to rats was proved to be a success in the pharmacokinetic study of the seven ingredients. Pharmacokinetics showed that ZR processing could enhance the absorption and utilization of 6-shogaol, 6-paradol and diacetyl-6-gingerol, meanwhile reduce the absorption of 6-gingerol, 8-gingerol, and 10-gingerol. Through the pathway enrichment analysis, it was found that the significant biological process of ZR and ZRC on DCHS was primarily associated with complement, coagulation cascades and platelet activation pathways. The vitro experiments indicated that zingiberone, 6-paradol and diacetyl-6-gingerol had a hemostatic effect by upregulating the expression of one or more targets such as TNF-α, FⅩa, FⅫ, FⅧ, ICAM-1, vWF and ITGB3. While 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol played a critical role in promoting blood circulation by increasing the expression of TM and/or PORC, and/or reducing the expression of ITGB3.
Conclusion: In brief, network pharmacological technique in combination with pharmacokinetics strategy provided an applicable method for pharmacological mechanism study of ZR and ZRC, which, also, could be used as reference for quality control of the two drugs. In a broader sense, this combined strategy might even be valuable in uncovering the therapeutic and processing mechanism of Chinese herbs on a systematic level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2022.115754 | DOI Listing |
BMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.
In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Istanbul, Maslak, 34469, Turkey.
A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!