Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Noopept (NP) is a proline-containing dipeptide with nootropic and neuroprotective properties. We have previously shown that NP significantly increased the frequency of spontaneous IPSCs in hippocampal CA1 pyramidal cells mediated by the activation of inhibitory interneurons in stratum radiatum. The cholinergic system plays an important role in the performance of cognitive functions, furthermore multiple behavioral and clinical facts link NP with the cholinergic system. The present study was undertaken to reveal the possible interaction of NP with neuronal nicotinic acetylcholine receptors (nAChRs). Currents were recorded from rat hippocampal neurons using the whole-cell, patch-clamp technique. NP (5 µM) increased the action potential firing frequency recorded from GABAergic interneurons in the stratum radiatum (SR) of CA1 region. This effect was almost completely abolished by the application of the α7 nAChR-selective antagonists α-bungarotoxin (α-BGT; 6 nM) and methyllycaconitine (MLA; 20 nM). The increase in the frequency of spontaneous IPSCs in CA1 pyramidal cells induced by NP was also eliminated by α7 nAChRs antagonists. These results imply the involvement of α7 nAChRs in the modulation of hippocampal neuronal activity caused by NP and indicate that a7 nAChRs are an important site of action of NP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2022.136898 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!