Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterostructure BiVO/BiOnanocomposites with enhanced visible light activity are effectively synthesized through an easiest and single step hydrothermal route, using bismuth subnitrate and ammonium meta-vanadate as main raw materials in existence of citric acid. The phase and surface structure, topography and optical properties of synthesized composites are characterized by XRD, SEM, EDX, FTIR, UV-Visible and PL spectroscopy. It was found that 5%BiVO/BiO(BOBV-5) nanocomposite exhibit excellent photocatalytic performance for rhodamine B dye degradation and tetracyclic under irradiation of visible light as compared to single component i.e. BiVO. The increased photocatalytic activity should be ascribed for making p-n heterojunction among p-type BiOand n-type BiVO. This p-n heterojunction successfully reduce the recombination of photogenerated charge carriers. Furthermore, the BOBV-5 novel photocatalyst shows good stability in constructive five cycles and photocatalytic activity is best for conquering photo corrosion of a photocatalysts. To explain charge migration route, whole photocatalytic mechanism was described in terms of energy band structures. Furthermore, the present work is helpful effort for design of new visible light photocatalytic materials with heterojunction structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac9738 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!