A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced heavy metal adsorption on microplastics by incorporating flame retardant hexabromocyclododecanes: Mechanisms and potential migration risks. | LitMetric

Enhanced heavy metal adsorption on microplastics by incorporating flame retardant hexabromocyclododecanes: Mechanisms and potential migration risks.

Water Res

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China. Electronic address:

Published: October 2022

AI Article Synopsis

  • Microplastics (MPs), particularly those containing the chemical additive hexabromocyclododecane (HBCD), can significantly enhance the adsorption of heavy metals like Cu(II), Ni(II), and Zn(II), increasing their environmental risks.
  • Studies showed that HBCD/PS composites have a much higher capacity to adsorb these metals compared to pure MPs and natural minerals, indicating that HBCD plays a critical role in this process.
  • The research highlights the potential for HBCD/PS MPs to act as secondary sources of heavy metals in marine environments, underlining the need for better management of flame retardant-related plastic waste in coastal areas.

Article Abstract

Microplastics (MPs) are known to act as carriers of heavy metals; however, little is known about the intrinsic chemical additives of MPs, such as hexabromocyclododecane (HBCD), in terms of the adsorption behaviors and migration risks of heavy metals on MPs. Here, we reported the potential mechanisms and risks of HBCD inherent in polystyrene (PS) MPs with Cu(II), Ni(II), and Zn(II) adsorption/desorption. A comparison of the adsorption capacity of the metals onto HBCD/PS composites (HBCD/PS) MPs (10.31-20.76 μmol/g), pure MPs (0-3.60 μmol/g), and natural minerals (0.11-13.88 μmol/g) showed that the addition of HBCD significantly promoted the metals adsorption onto the HBCD/PS MPs, and even exceeded that of natural particles. Isotherms and thermodynamic data suggested that the adsorption process of the metals onto the HBCD/PS MPs was spontaneous and endothermic, and that the adsorption was a mainly multi-ion process with an inclined direction. Furthermore, the results of SEM-EDS, FTIR, and XPS analyses, as well as density functional theory well explained that the metals were mainly adsorbed on the -O and -Br groups of the HBCD/PS MPs via electrostatic interactions and surface complexation. More importantly, by comparing the desorption activity with natural river water and seawater, HBCD inherent in MPs can enhance the long-range transfer of metals carried by the HBCD/PS MPs from contamination sources to potential sink like oceans. Thus, the HBCD/PS MPs with high loading of Cu(II), Ni(II), and Zn(II) could be potential secondary sources of these metals in seawater. Overall, these findings revealed the potential risks of flame retardant in MPs associated with metal migration, and advocated that flame retardant-related waste MPs should be included in coastal sustainable development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119144DOI Listing

Publication Analysis

Top Keywords

hbcd/ps mps
24
mps
14
flame retardant
8
migration risks
8
metals
8
heavy metals
8
hbcd inherent
8
cuii niii
8
niii znii
8
metals hbcd/ps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!