Spin hyperpolarization enables real-time metabolic imaging of carbon-13-labeled substrates. While hyperpolarized l-(1-C)alaninamide is a probe of the cell-surface tumor marker aminopeptidase-N (APN, CD13), its activity in vivo has not been described. Scanning the kidneys of rats infused with hyperpolarized alaninamide shows both conversion to [1-C]alanine and several additional spectral peaks with distinct temporal dynamics. The (1-C)alaninamide chemical shift is pH-sensitive, with a p of 7.9 at 37 °C, and the peaks correspond to at least three different compartments of pH 7.46 ± 0.02 (1), 7.21 ± 0.02 (2), and 6.58 ± 0.05 (3). An additional peak was assigned to the carboxyamino adduct formed by reaction with dissolved CO. Spectroscopic imaging showed nonuniform distribution, with the low-pH signal more concentrated in the inner medulla. Treatment with the diuretic acetazolamide resulted in significant pH shifts in compartment 1 to 7.38 ± 0.03 ( = 0.0057) and compartment 3 to 6.80 ± 0.05 ( = 0.0019). While the pH of compartment 1 correlates with blood pH, the pH of compartment 3 did not correspond to the pH of urine. In vitro experiments show that alaninamide readily enters blood cells and can detect intracellular pH. While carbamate formation depends on pH and pCO, the carbamate-to-alaninamide ratio did not correlate with either arterial blood pH or pCO, suggesting that it may reflect variations in tissue pH and pCO. This study demonstrates the feasibility of using hyperpolarized sensors to simultaneously image enzyme activity, pCO, and pH in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.2c01203DOI Listing

Publication Analysis

Top Keywords

hyperpolarized
4
hyperpolarized 1-calaninamide
4
1-calaninamide multifunctional
4
multifunctional vivo
4
vivo sensor
4
sensor aminopeptidase
4
aminopeptidase activity
4
activity spin
4
spin hyperpolarization
4
hyperpolarization enables
4

Similar Publications

Light-Harvesting Spin Hyperpolarization of Organic Radicals in a Metal-Organic Framework.

J Am Chem Soc

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.

View Article and Find Full Text PDF

The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the N chemical shifts of different relevant species.

View Article and Find Full Text PDF

RF Heating Effects in CEST NMR with Hyperpolarized 129Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.

Chemphyschem

January 2025

Deutsches Krebsforschungszentrum, Translational Molecular Imaging, Im Neuenheimer Feld 223, 69120, Heidelberg, GERMANY.

Chemical exchange saturation transfer (CEST) improves the sensitivity of NMR but depending on the spin exchange kinetics, it can require substantial RF energy deposition to label magnetization. Potential side effects like RF-induced heating may occur and must be monitored. Here, we explore the parameter space considering not only undesired heating but efficient CEST build-up (depolarization rate), spectral resolution (line width), and subsequent effects like changes in chemical shifts of CEST responses must be considered, too.

View Article and Find Full Text PDF

Ultrasensitive Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing.

Adv Sci (Weinh)

January 2025

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.

Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times.

View Article and Find Full Text PDF

Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!