The detailed mechanisms of Belousov-Zhabotinsky oscillating reactions continue to present grand challenges, even after half a century of study. The origin of the pH dependence of the oscillation pattern had never been rigorously identified. In our recent kinetic study of one of the key Belousov-Zhabotinsky reactions, the iron-catalyzed bromate oxidation of malonic acid, compelling agreement between experiments and kinetic simulations was achieved only with the inclusion of second-order proton catalysis of the reduction of the [Fe(phen)] species. After exhausting all other avenues in search of an explanation of this proton catalysis, we considered the possibility that the parent iron-phenanthroline complexes could aggregate with neutral and anionic outer sphere ligands (OSLs) in the highly concentrated sulfuric acid solution, and we hypothesized that OSL protonation would increase the capacity of the aggregated complex to oxidize the organic fuel. We performed potential energy surface analyses at the SMD(APFD/6-311G*) level of complexes of the types [Fe(phen)(SO)(HSO)(HSO)] for ferriin ( = 3) and ferroin ( = 2) aggregated with sulfate, bisulfate, and sulfuric acid OSLs. We present structures of the OSL aggregates, develop a nomenclature for their description, and characterize their electronic structure. The structural chemistry provides the foundation to discuss the ferroin/ferriin redox couple with emphasis on the relationship between the vertical electron affinities of ferriin aggregates and their OSL protonation states. For proton catalysis to manifest itself, double-protonation paths that are slightly endergonic should be present, and proton affinities of aggregated OSLs allow the identification of such double-protonation chains. As a first test of our mechanistic proposal for the second-order proton catalysis of the Belousov-Zhabotinsky reaction, the results presented here provide compelling evidence in support of the importance of outer sphere ligation of the iron catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c05879DOI Listing

Publication Analysis

Top Keywords

proton catalysis
20
second-order proton
12
outer sphere
12
sulfuric acid
12
belousov-zhabotinsky reactions
8
ferriin aggregates
8
sphere ligands
8
sulfate bisulfate
8
bisulfate sulfuric
8
osl protonation
8

Similar Publications

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

MoS-confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid.

Nat Commun

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.

Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.

View Article and Find Full Text PDF

Photo-driven Ammonia Synthesis via a Proton-mediated Photoelectrochemical Device.

Angew Chem Int Ed Engl

January 2025

Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Design and Assembly of Functiaonal Nanostructures, YangQiao West Road 155#, 350002, Fuzhou, CHINA.

N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device.

View Article and Find Full Text PDF

A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.

View Article and Find Full Text PDF

Electrochemically inserting and extracting hydrogen into and from solids are promising ways to explore materials' phases and properties. However, it is still challenging to identify the structural factors that promote hydrogen insertion and extraction and to develop materials whose functional properties can be largely modulated by inserting and extracting hydrogen through solid-state reactions at room temperature. In this study, guided by theoretical calculations on the energies of oxygen reduction and hydrogen insertion reactions with oxygen-deficient perovskite oxides, we demonstrated that the oxygen vacancy ordering in Sr(FeCo)O (SFCO) epitaxial films can be stabilized by increasing the Co content (x ≥ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!