Precisely constructed porous composites containing catalytically active nanoparticles can stabilize unstable nanoparticles, thus improving catalytic activity and longevity while preventing agglomeration of active nanoparticles. Herein, we report the confined incorporation of highly active metal nanoparticles within a metal-organic framework support and efficient catalytic performances in the reduction of organic pollutants, such as methylene blue (MB) and 4-nitrophenol (4-NP). UiO-66-based porous composites (M@UiO-66, M = Pt or Ag) containing well-dispersed metal nanoparticles are constructed via the one-step thermal treatment of UiO-66 implanted with metal ions (UiO-66/M, M = Pt or Ag). The comprehensive features of M@UiO-66s, such as well-dispersed nanocatalysts, well-developed pores, and characteristic surface charges, expedite not only efficient but also selective catalytic activities in the reduction of MB or 4-NP, along with impressive recyclability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c02886DOI Listing

Publication Analysis

Top Keywords

efficient selective
8
selective catalytic
8
catalytic activities
8
reduction organic
8
organic pollutants
8
porous composites
8
active nanoparticles
8
metal nanoparticles
8
nanoparticles
5
surface charge-directed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!