Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of , a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578700PMC
http://dx.doi.org/10.7554/eLife.75978DOI Listing

Publication Analysis

Top Keywords

age-dependent aggregation
8
rna-binding proteins
8
chromatin instability
8
proteostasis stress
8
rrna-binding proteins
8
rdna stability
8
proteostasis
5
aggregation ribosomal
4
ribosomal rna-binding
4
proteins
4

Similar Publications

Background: Rodent models have been proved pivotal in Alzheimer's disease (AD) research. Nevertheless, the use of models that only recapitulate one aspect of AD neuropathology, and of early time points that might be excluding important features such as age-dependent inflammation and senescence, could hinder the development of effective AD therapeutics. Several tau immunotherapies are currently undergoing clinical trial.

View Article and Find Full Text PDF

PLB2 mice are impaired in novel and temporal object recognition and show corresponding traits in brain MRI.

Brain Res Bull

December 2024

Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK. Electronic address:

Recent clinical trials targeting tau protein aggregation have heightened interest in tau-based therapies for dementia. Success of such treatments depends crucially on translation from non-clinical animal models. Here, we present the age profile of the PLB2 knock-in model of fronto-temporal dementia in terms of cognition, and by utilising a directly translatable magnetic resonance imaging approach.

View Article and Find Full Text PDF

Over the past two decades, has proven to be successful in modeling the polyglutamine (polyQ) (caused by CAG repeats) family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. In this study, pan-neuronal expression of human with long polyQ repeat of 82 amino acids was driven using an elav-GAL4 driver line. This would essentially model the polyQ disease spinocerebellar ataxia type 1 (SCA1).

View Article and Find Full Text PDF

Ageing-related neuromuscular dysfunction is associated with reduced tropomyosin-related kinase receptor subtype B (TrkB) signalling and accumulation of damaged cytoplasmic aggregates in motor neurons. Autophagy functions to remove these damaged aggregates, and we previously reported increased cervical motor neuron expression of LC3 and p62 in old age. We hypothesized that inhibition of TrkB kinase activity results in an increase in the relative expression of both LC3 and p62 in cervical motor neurons, consistent with impaired progression of autophagy.

View Article and Find Full Text PDF

Exactly why human infection of avian influenza A virus H7N9 causes more severe disease in the elderly remains elusive. In this study, we found that H7N9 PB1-F2 is a pathogenic factor in 15-18-month-old BALB/C mice (aged mice) but not in 6-8-week-old young adult mice (young mice). Recombinant influenza A virus with H7N9 PB1-F2-knockout was less pathogenic in aged mice as indicated with delayed weight loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!