Background: Circulating tumor DNA (ctDNA) has made a breakthrough as an early biomarker in operable early-stage cancer patients. However, the function of ctDNA combined with cell-free DNA (cfDNA) as a predictor in advanced non-small cell lung cancer (NSCLC) remains unknown. Here, we explored its potential as a biomarker for predicting the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients with advanced NSCLC.
Methods: A retrospective analysis was undertaken. Plasma collected from 51 patients with advanced NSCLC prior to and serially after starting treatment with EGFR-TKIs was analyzed by next-generation sequencing (NGS). The performance of ctDNA, cfDNA, and combining ctDNA with cfDNA were evaluated for their ability to predict survival outcomes.
Results: Patients with early undetectable ctDNA and increasing cfDNA had a markedly better progression-free survival (PFS) (p < 0.001) and overall survival (OS) (p = 0.001) than those with early detectable ctDNA and decreasing cfDNA. Patients with early ctDNA clearance were more likely to have the ctDNA persistent clearance (p = 0.006). The early clearance rate of ctDNA in the normal carcinoembryonic antigen (CEA) group was significantly higher than in the low and high groups (p = 0.028). Patients with greater CEA decline had a higher early clearance rate of ctDNA than those with minor CEA change (p = 0.016).
Conclusions: We based this study on ctDNA and cfDNA, explored its prognostic predictive ability, and combined CEA to monitor EGFR-TKI efficacy. This study may provide new perspectives and insights into the precise treatment strategies for NSCLC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663669 | PMC |
http://dx.doi.org/10.1111/1759-7714.14668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!