A Perovskite Photodetector Crossbar Array by Vapor Deposition for Dynamic Imaging.

Adv Mater

Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P.R. China.

Published: December 2022

With the development of perovskite photodetectors, integrating photodetectors into array image sensors is the next target to pursue. The major obstacle to integrating perovskite photodiodes for dynamic imaging is the optoelectrical crosstalk among the pixels. Herein, a perovskite photodiode-blocking diode (PIN-BD) crossbar array with pixel-wise rectifying property by the vapor deposition method is presented. The PIN-BD shows a large rectification ratio of 3.3 × 10 under illumination, suppressing electrical crosstalk to as small as 8.0% in the imaging array. The fast response time of 72.8 ns allows real-time image acquisition by over 25 frames per second. The imaging sensor exhibits excellent imaging capability with a large linear dynamic range of 112 dB with 4096 gray levels and weak light sensitivity under 1.2 lux.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202207106DOI Listing

Publication Analysis

Top Keywords

crossbar array
8
vapor deposition
8
dynamic imaging
8
imaging
5
perovskite
4
perovskite photodetector
4
photodetector crossbar
4
array
4
array vapor
4
deposition dynamic
4

Similar Publications

Large language models (LLMs), with their remarkable generative capacities, have greatly impacted a range of fields, but they face scalability challenges due to their large parameter counts, which result in high costs for training and inference. The trend of increasing model sizes is exacerbating these challenges, particularly in terms of memory footprint, latency and energy consumption. Here we explore the deployment of 'mixture of experts' (MoEs) networks-networks that use conditional computing to keep computational demands low despite having many parameters-on three-dimensional (3D) non-volatile memory (NVM)-based analog in-memory computing (AIMC) hardware.

View Article and Find Full Text PDF

Recent experimental studies in the awake brain have identified a rule for synaptic plasticity that is instrumental for the instantaneous creation of memory traces in area CA1 of the mammalian brain: Behavioral Time scale Synaptic Plasticity. This one-shot learning rule differs in five essential aspects from previously considered plasticity mechanisms. We introduce a transparent model for the core function of this learning rule and establish a theory that enables a principled understanding of the system of memory traces that it creates.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions.

ACS Nano

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.

View Article and Find Full Text PDF

The efficient conduction of mobile ions in halide perovskites is highly promising for artificial synapses (or memristive devices), devices with a conductivity that can be varied by applying a bias voltage. Here we address the challenge of downscaling halide perovskite-based artificial synapses to achieve low energy consumption and allow high-density integration. We fabricate halide perovskite artificial synapses in a back-contacted architecture to achieve microscale devices despite the high solubility of halide perovskites in polar solvents that are commonly used in lithography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!