Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two series of hyper-coordinated halide-centered M cuboctahedral clusters, [M(μ-X){SP(OPr)}{CCPh}](PF), 1a-c and 2a-c (where M = Cu, 1; Ag, 2; X = Cl, a; Br, b; I, c), were synthesized and fully characterized by ESI-MS, multi-NMR spectroscopy, IR and UV-Vis spectroscopy, photoluminescence analysis, and single-crystal X-ray crystallography. Structures 1c, 2b, and 2c show a twelve-coordinated halide encapsulated in the M cage, which is stabilized by six dithiophosphate and four alkynyl ligands. Compound 2b is the first Ag(I) cluster containing a twelve-coordinated bromide. The structural features of all six clusters are highly similar, providing a comparison basis of the inverse coordination for halides. Besides, the detailed structural analysis illustrates how the inverse coordination of a halide has influenced the size of the cuboctahedral M framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt02100e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!