The heat-induced crystallization of amorphous calcium phosphate (ACP) is an intriguing process not yet well comprehended. This is because most of the works on this topic are based on studies where the materials are characterized after the heat and cooldown cycles, thus missing transient structural changes. Here, we used time-resolved energy dispersive X-ray diffraction and infrared spectroscopy to study, for the first time, the thermal crystallization of ACP . The thermal crystallization of two kinds of citrate-stabilized carbonated ACP was studied, as they are promising materials for the preparation of advanced bioceramics. The behavior of these samples was compared to that of two citrate-free ACPs, either doped or non-doped with carbonate ions. Our results evinced that several phenomena occur during ACP thermal annealing. Before crystallization, all ACP samples undergo a decrease in the short-range order process, followed by several internal reorganizations. We have assessed that differently from carbonate-free ACP, carbonated ACPs with and without citrate directly crystallize into a biomimetic poorly crystalline carbonated hydroxyapatite. Citrate-stabilized ACPs in comparison to citrate-free ACPs have a faster hydroxyapatite formation kinetics, which is due to their higher specific surface area. This work reveals the necessity and the potentialities of using techniques to effectively probe complex processes such as the heat-induced crystallization of ACPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02352k | DOI Listing |
Sci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Energy and Automotive Engineering, Shunde Polytechnic, Foshan 528300, China.
A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.
Molecules
January 2025
Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, nam. Cs Legii 565, 532 10 Pardubice, Czech Republic.
The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol for the temperature shift, but with a significantly higher value of ~500 kJ·mol being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!