Dhiba port has a strategic location near the Neom project. Various anthropogenic activities contributed to the discharge of metals, metalloids and oil spills in the aquatic system and caused environmental pollution. Microalgae are the best microorganisms in aquatic conditions known to be capable of eliminating contaminants. In this work the sp. was isolated from seawater, the metals, metalloids were determine using ICP- OES (Inductively Coupled Plasma-Optical Emission Spectrometer) and hydrocarbons were determine using GC-MS in different five sites in Dhiba port, after and before treated with sp, and immobilized sp. The growth parameters (optical density and pigment contents) of sp and immobilized sp. were investigated during 14 days of grown. The results showed that the most contaminated site by metals and metalloids was site no 3, by Sb, As, Be, Se, and Zn with concentrations 0.07546, 0.05709, 0.09326, 0.4618, and 0.00979 mg/L respectively, and site no 1 was the most contamination by organic compounds, so the site no 1 and site no 3 were chosen to test the efficiency of sp. and immobilized sp. to remove hydrocarbons and both metals and metalloids. sp. and immobilized sp. had completely removed metals and metalloids that were present in site 3. There were only 6 compounds remained, after treatments with immobilized alga in site 1. Immobilized sp. is the most effective than suspended sp in reduces the number of organic compounds in contaminated area. It is an economic tool due to simplifying harvesting and then retaining for further processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526162PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e10766DOI Listing

Publication Analysis

Top Keywords

metals metalloids
20
dhiba port
12
sites dhiba
8
metalloids site
8
organic compounds
8
immobilized
7
site
7
metals
5
metalloids
5
comparative study
4

Similar Publications

Co-pyrolysis is an efficient approach for municipal sewage sludge (SS) treatment, facilitating the production of biochar and promoting the stabilization and removal of heavy metals, particularly when combined with chlorinated materials. This study explores the impact of pyrolysis temperatures (400 °C and 600 °C) and chlorinated additives (polyvinyl chloride (PVC) as an organic chloride source and ferric chloride (FeCl) as an inorganic chloride source) at 10% and 20% concentrations, on the yield, chemical speciation, leachability, and ecological risks of arsenic (As), chromium (Cr), and zinc (Zn) in biochar derived from SS. The results revealed that increasing the pyrolysis temperature from 400 to 600 °C significantly reduced biochar yield due to enhanced volatilization of organic components, as well as the removal of heavy metals in interaction with chlorinated materials.

View Article and Find Full Text PDF

Heavy metal(loid)s and nutrients in sewage sludge in Portugal - Suitability for use in agricultural soils and assessment of potential risks.

Sci Total Environ

January 2025

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Electronic address:

The presence of heavy metal(loid)s in sewage sludge is a cause of concern and an obstacle to its agricultural valorisation. This study analysed the elemental composition of sewage sludge from 42 Portuguese wastewater treatment plants (WWTPs) during summer and winter, investigating heavy metal(loid) contamination, nutrient content, and potential risks related to sludge application to agricultural soils. Levels of 8 heavy metal(loid)s were investigated, ranging from not detected (Hg) to 5120 mg kg dw (Zn), decreasing in the order Zn > Cu > Cr > Ni > Pb > As>Cd > Hg.

View Article and Find Full Text PDF

Strategies of physiological, morpho-anatomical and biochemical adaptation in seedlings of native species exposed to mining waste.

Ecotoxicol Environ Saf

January 2025

Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina. Electronic address:

Seeds of four native species of trees and shrubs (Larrea cuneifolia, Bulnesia retama, Plectrocarpa tetracantha and Prosopis flexuosa) were exposed to soil contaminated with As, Cu, Cd, and Zn from an abandoned gold mine to identify adaptation strategies. Several physiological, morpho-anatomical, and biochemical parameters were determined. The seed germination of L.

View Article and Find Full Text PDF

-Ge/B 1,1-Hydroboration of Alkynylgermanes with 9-BBN.

Org Lett

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

A 1,1-hydroboration of alkynylgermanes with unique -Ge/B stereochemistry under transition-metal-free conditions is reported. Mechanistic studies suggest that a pathway involving α-boration followed by a stepwise 1,2-Ge/H shift on the intermediate structurally lies between an alkyne-Ge π complex and a typical vinyl cation. The resulting Ge/B bimetallic modules, along with a /Ge/B trimetallic variant, can be conveniently transformed into trisubstituted olefins through iterative divergent cross-coupling.

View Article and Find Full Text PDF

Contamination of soils with toxic metals poses significant threats to human health and ecosystems. Plant-based remediation strategies can play a vital role in mitigating these risks, and the use of plants as a remediation strategy can help reduce these risks. In this study, we investigate the remediation potential of native plants in accumulating and translocating metal(loid)s at a Colombian site impacted by gold mining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!