A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extracellular Matrix Profiling and Disease Modelling in Engineered Vascular Smooth Muscle Cell Tissues. | LitMetric

Aortic smooth muscle cells (SMCs) have an intrinsic role in regulating vessel homeostasis and pathological remodelling. In two-dimensional (2D) cell culture formats, however, SMCs are not embedded in their physiological extracellular matrix (ECM) environment. To overcome the limitations of conventional 2D SMC cultures, we established a 3D model of engineered vascular smooth muscle cell tissues (EVTs). EVTs were casted from primary murine aortic SMCs by suspending a SMC-fibrin master mix between two flexible silicon-posts at day 0 before prolonged culture up to 14 days. Immunohistochemical analysis of EVT longitudinal sections demonstrated that SMCs were aligned, viable and secretory. Mass spectrometry-based proteomics analysis of murine EVT lysates was performed and identified 135 matrisome proteins. Proteoglycans, including the large aggregating proteoglycan versican, accumulated within EVTs by day 7 of culture. This was followed by the deposition of collagens, elastin-binding proteins and matrix regulators up to day 14 of culture. In contrast to 2D SMC controls, accumulation of versican occurred in parallel to an increase in versikine, a cleavage product mediated by proteases of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family. Next, we tested the response of EVTs to stimulation with transforming growth factor beta-1 (TGFβ-1). EVTs contracted in response to TGFβ-1 stimulation with altered ECM composition. In contrast, treatment with the pharmacological activin-like kinase inhibitor (ALKi) SB 431542 suppressed ECM secretion. As a disease stimulus, we performed calcification assays. The ECM acts as a nidus for calcium phosphate deposition in the arterial wall. We compared the onset and extent of calcification in EVTs and 2D SMCs cultured under high calcium and phosphate conditions for 7 days. Calcified EVTs displayed increased tissue stiffness by up to 30 % compared to non-calcified controls. Unlike the rapid calcification of SMCs in 2D cultures, EVTs sustained expression of the calcification inhibitor matrix Gla protein and allowed for better discrimination of the calcification propensity between independent biological replicates. In summary, EVTs are an intuitive and versatile model to investigate ECM synthesis and turnover by SMCs in a 3D environment. Unlike conventional 2D cultures, EVTs provide a more relevant pathophysiological model for retention of the nascent ECM produced by SMCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526190PMC
http://dx.doi.org/10.1016/j.mbplus.2022.100122DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
evts
10
extracellular matrix
8
engineered vascular
8
vascular smooth
8
muscle cell
8
cell tissues
8
smcs
8
day culture
8
calcium phosphate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!