Honey is one of the foods easily adulterated worldwide. Recently, the analysis of honeybee DNA has been proposed as a useful tool to authenticate the entomological origin of honey. However, the methods proposed so far require more than one polymerase chain reaction (PCR) and the use of agarose gels, making the authentication process laborious and lengthy. In this work, a novel real-time PCR coupled with high-resolution melting (HRM) analysis of a 150 bp fragment of the cytochrome c oxidase I (COI) gene is proposed as a fast and simple tool to assess honey's entomological origin by discriminating the mitochondrial DNA lineages of European honey bees (A, M and C lineages). In addition, the new tool allowed the differentiation of honeys produced by different mitotypes of C-lineage ancestry. The method showed high analytical performance and was able to successfully identify the entomological origin of honeys of known origin obtained from research apiaries/beekeepers. Therefore, it was applied to 44 commercial honeys from different countries. It confirmed the entomological authenticity of French PDO honeys that should be produced by the Corse ecotype A. m. mellifera. For the remaining honeys, the results were also in good agreement with the declared geographical origin. However, three honeys from Slovenia did not cluster with C2 mitotype A. m. carnica as expected, suggesting the mixture of honeys produced by honeybees of different mitotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111761 | DOI Listing |
Pathogens
December 2024
Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
The dengue virus (DENV) is a mosquito-borne flavivirus endemic to many tropical and subtropical regions. Over the past few decades, the global incidence of dengue has risen dramatically, with the virus now present in over 100 countries, putting nearly half of the world's population at risk. This increase is attributed to several factors, including urbanization, climate change, and global travel, which facilitate the spread of both the virus and its mosquito vectors.
View Article and Find Full Text PDFFoods
November 2024
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
The chemical composition and quality of honey are influenced by its botanical, geographic, and entomological origins, as well as climatic conditions. In this study, the physicochemical characteristics, microbial communities, and hydrocarbon compounds of honey produced by , , , , and were elucidated. The physicochemical profile of the honey exhibited significant differences across species, including moisture content (18.
View Article and Find Full Text PDFThe first extinct Paleogene species of the Anobiinae genus Nicobium LeConte, 1861 is described based on an inclusion in Baltic amber. Two characteristic features distinguishing the extinct species (among other characters present in one combination or another in extant species) are sparse, inconspicuous elytral pubescence and rectangular, sharp posterior pronotal angles. The new species, Nicobium necrocrator sp.
View Article and Find Full Text PDFMetabolites
November 2024
Department of Life and Environmental Sciences, Università degli Studi di Cagliari, 09042 Monserrato, Italy.
This review presents the latest research on chromatography-based metabolomics for bioorganic research of honey, considering targeted, suspect, and untargeted metabolomics involving metabolite profiling and metabolite fingerprinting. These approaches give an insight into the metabolic diversity of different honey varieties and reveal different classes of organic compounds in the metabolic profiles, among which, key metabolites such as biomarkers and bioactive compounds can be highlighted. Chromatography-based metabolomics strategies have significantly impacted different aspects of bioorganic research, including primary areas such as botanical origins, honey origin traceability, entomological origins, and honey maturity.
View Article and Find Full Text PDFSyst Biol
November 2024
Department of Entomology, China Agricultural University, Beijing 100193, China.
Evolutionary novelties are commonly identified as drivers of lineage diversification, with key innovations potentially triggering adaptive radiation. Nevertheless, testing hypotheses on the role of evolutionary novelties in promoting diversification through deep time has proven challenging. Here we unravel the role of the raptorial appendages, with evolutionary novelties for predation, in the macroevolution of a predatory insect lineage, the Superfamily Mantispoidea (mantidflies, beaded lacewings, thorny lacewings, and dipteromantispids), based on a new dated phylogeny and quantitative evolutionary analyses on modern and fossil species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!