Low-grade gliomas are a broad category of tumors that can manifest at different stages of life. As a group, their prognosis has historically been considered to be favorable, and surgery is a mainstay of treatment. Advances in the molecular characterization of individual lesions has led to newer classification systems, a better understanding of the biological behavior of different neoplasms, and the identification of previously unrecognized entities. New prospective genetic and molecular data will help delineate better treatment paradigms and will continue to change the taxonomy of central nervous system tumors in the coming years. Advances in the field of radiomics will help predict the molecular profile of a particular tumor through noninvasive testing. Similarly, more precise methods of intraoperative tumor tissue analysis will aid surgical planning. Improved surgical outcomes propelled by novel surgical techniques and intraoperative adjuncts and emerging forms of medical treatment in the field of immunotherapy have enriched the management of these lesions. We review the contemporary management and innovations in the treatment of low-grade gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2022.06.070 | DOI Listing |
NMC Case Rep J
December 2024
Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan.
Ganglioglioma, a glioneuronal neoplasm, typically presents in adolescents' temporal lobes. While pediatric brainstem gangliogliomas (BSGGs) are well documented, adult BSGGs are limited, resulting in a lack of comprehensive understanding of their pathophysiology and prognosis. A 41-year-old woman who presented with dizziness and numbness in her right upper extremity and right face underwent radiological examination.
View Article and Find Full Text PDFBrain Spine
December 2024
Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.
•Defining the concept of "onco-functional" balance.•Detailing the clinical implications in brain tumor surgery.•Discussing the future of this philosophy.
View Article and Find Full Text PDFPol J Pathol
January 2025
Department of Neonatology, Weifang Maternal and Child Health Hospital, China.
Pediatric low-grade glioma (PLGG) is a heterogeneous group of primary central nervous system malignancies which represent the most frequent brain tumors in children. Although diagnosis and treatment of PLGG have been improved recently, the molecular mechanisms underlying the oncogenesis and progression of PLGG remain elusive. Studies have revealed critical roles of long non-coding RNAs (lncRNAs) in brain tumor progressions.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North No.1838, Guangzhou, 510515, Guangdong, People's Republic of China.
The identification of oncogenic gene fusions in diffuse gliomas may serve as potential therapeutic targets and prognostic indicators, representing a novel strategy for treating gliomas consistent with the principles of personalized medicine. This study identified detectable oncogene fusions in glioma patients through an integrated analysis of genomic and transcriptomic data, which encompassed whole exon sequencing and next-generation RNA sequencing. In addition, this study also conducted a comparison of the genetic characteristics, tumor microenvironment, mutation burden and survival between glioma patients with or without gene fusions.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Background: Central nervous system (CNS) tumors lead to cancer-related mortality in children. Genetic ancestry-associated cancer prevalence and outcomes have been studied, but is limited.
Methods: We performed genetic ancestry prediction in 1,452 pediatric patients with paired normal and tumor whole genome sequencing from the Open Pediatric Cancer (OpenPedCan) project to evaluate the influence of reported race and ethnicity and ancestry-based genetic superpopulations on tumor histology, molecular subtype, survival, and treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!