Dengue is a mosquito-borne disease endemic in many tropical and subtropical countries. It is caused by the dengue virus (DENV) that can be classified into 4 different serotypes (DENV-1-4). Early diagnosis and management can reduce morbidity and mortality rates of severe forms of the disease, as well as decrease the risk of larger outbreaks. Hiperendemicity in some regions of the world and the possibility that some people develop a more severe form of disease after a secondary infection caused by antibody-dependent enhancement justify the need to understand more thoroughly the antibody response induced against the virus. Here, we successfully produced a recombinant DENV-2 envelope (E) protein and its domains (EDI/II and EDIII) in two distinct expression systems: the Drosophila S2 insect cell system and the BL21 (DE3) pLySs bacterial system. We then evaluated the reactivity of sera from patients previously infected with DENV to each recombinant protein and to each domain separately. Our results show that the E protein produced in Drosophila S2 cells is recognized more frequently than the protein produced in bacteria. However, the recognition of E protein produced in bacteria correlates better with the DENV-2 sera neutralization capacity. The results described here emphasize the differences observed when antigens produced in bacteria or eukaryotic cells are used and may be useful to gain more insight into the humoral immune responses induced by dengue infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12026-022-09326-4DOI Listing

Publication Analysis

Top Keywords

produced bacteria
16
protein produced
12
bacteria eukaryotic
8
eukaryotic cells
8
produced
6
protein
5
reactivity denv-positive
4
denv-positive sera
4
sera recombinant
4
recombinant envelope
4

Similar Publications

Benzo (a) pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. In order to alleviate the harm of foodborne benzo (a) pyrene to human health, a strain that can degrade benzo (a) pyrene was screened from Kefir, a traditional fermented product in Xinjiang. Bacillus cereus M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir, under Benzo(a)pyrene stress conditions, there was 69.

View Article and Find Full Text PDF

Correct treatment of chronic osteomyelitis depends on proper identification of the bone-infecting microorganism, but it is difficult identify the specific etiology in previously treated patients and in those with implants. Small colony variants auxotrophyc for menadione had been related with false-negative results in culture of patient with chronic osteomyelitis, but menadione supplementation can increase bone culture performance. The purpose was to evaluate the effect of menadione supplementation on isolates in bone cultures, in a cohort of patients with osteomyelitis, Medellín- Colombia.

View Article and Find Full Text PDF

The cytoplasmic membrane of bacteria is composed of a phospholipid bilayer made up of a diverse set of lipids. Phosphatidylglycerol (PG) is one of the principal constituents and its production is essential for growth in many bacteria. All the enzymes required for PG biogenesis in have been identified and characterized decades ago.

View Article and Find Full Text PDF

Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!