Efficacy of thermoplastic polyurethane and gelatin blended nanofibers covered stent graft in the porcine iliac artery.

Sci Rep

Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Published: October 2022

Stent-grafts composed of expanded polytetrafluoroethylene (e-PTFE), polyethylene terephthalate (PET) and polyurethane (PU) are characterized by poor endothelialization, high modulus, and low compliance, leading to thrombosis and intimal hyperplasia. A composite synthetic/natural matrix is considered a promising alternative to conventional synthetic stent-grafts. This study aimed to investigate the efficacy of thermoplastic polyurethane (TPU) and gelatin (GL) blended nanofibers (NFs) covered stent-graft in the porcine iliac artery. Twelve pigs were randomly sacrificed 7 days (n = 6) and 28 days (n = 6) after stent-graft placement. The thrombogenicity score at 28 days was significantly increased compared at 7 days (p < 0.001). The thickness of neointimal hyperplasia, degree of inflammatory cell infiltration, and degree of collagen deposition were significantly higher at 28 days than at 7 days (all p < 0.001). The TPU and GL blended NFs-covered stent-grafts successfully maintained the patency for 28 days in the porcine iliac artery. Although thrombosis with neointimal tissue were observed, no subsequent occlusion of the stent-graft was noted until the end of the study. Composite synthetic/natural matrix-covered stent-grafts may be promising for prolonging stent-graft patency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529973PMC
http://dx.doi.org/10.1038/s41598-022-20950-wDOI Listing

Publication Analysis

Top Keywords

efficacy thermoplastic
8
thermoplastic polyurethane
8
gelatin blended
8
blended nanofibers
8
porcine iliac
8
iliac artery
8
polyurethane gelatin
4
nanofibers covered
4
covered stent
4
stent graft
4

Similar Publications

Vibration Welding of PLA/PHBV Blend Composites with Nanocrystalline Cellulose.

Polymers (Basel)

December 2024

Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.

Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications.

View Article and Find Full Text PDF

For wider adoption of the material extrusion (MatEx)-based additive manufacturing (AM) process, it is important to understand the systems for an improved production rate of the machine. This AM process is the most adaptable and popular due to its wide availability, scalability, compatibility with a broad range of thermoplastic materials, and decreasing cost of personal MatEx-based systems. The performance limits are being explored by many researchers, but none have tried to find the efficacy of different kinematic configurations.

View Article and Find Full Text PDF

Stereotactic ablative radiotherapy (SABR) has become a key technique in management of spine metastases. With improved control over treatment plan dosimetry, there is a greater need for accurate patient positioning to guarantee agreement between the treatment plan and delivered dose. With serious potential complications such as fracture and myelopathy, the margins of error in SABR of the spine are minimal.

View Article and Find Full Text PDF

Background: Chronic venous insufficiency (CVI) is a common disease with a high prevalence. Incompetent venous valves are considered as one of the main causes. Besides compression therapy, various surgical therapies are practiced, whereby the reconstruction of valves is of central importance.

View Article and Find Full Text PDF

Silk fibroin (SF) is a natural protein generated from the silkworm cocoons. It is useful for many different material applications. Versatile aqueous process engineering options can be used to support the morphological and structural modifications of silk materials related to tailored physical, chemical, and biological properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!