Deoxygenation of aldehydes and their tautomers to alkenes and alkanes has implications in refining biomass-derived fuels for use as transportation fuel. Electrochemical deoxygenation in ambient, aqueous solution is also a potential green synthesis strategy for terminal olefins. In this manuscript, direct electrochemical conversion of vinyl alcohol and acetaldehyde on polycrystalline Cu to ethanol, ethylene and ethane; and propenol and propionaldehyde to propanol, propene and propane is reported. Sensitive detection was achieved using a rotating disk electrode coupled with gas chromatography-mass spectrometry. In-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy, and in-situ Raman spectroscopy confirmed the adsorption of the vinyl alcohol. Calculations using canonical and grand-canonical density functional theory and experimental findings suggest that the rate-determining step for ethylene and ethane formation is an electron transfer step to the adsorbed vinyl alcohol. Finally, we extend our conclusions to the enol reaction from higher-order soluble aldehyde and ketone. The products observed from the reduction reaction also sheds insights into plausible reaction pathways of CO to C and C products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530228 | PMC |
http://dx.doi.org/10.1038/s41467-022-33620-2 | DOI Listing |
Polymers (Basel)
December 2024
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
This study compared the use of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) in different concentrations to reinforce the poly(vinyl alcohol) (PVA) matrix. Both nanofillers significantly improved the elastic modulus and tensile strength of PVA biocomposite films. The optimum concentration of CNF and LCNF was 6% relative to PVA, which improved the tensile strength of the final PVA biocomposite with CNF and LCNF by 53% and 39%, respectively, compared to the neat PVA film.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Materials Technology Program, School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Bangkok 10140, Thailand.
Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amox into a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin-susceptible (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
Herein, we report a photocatalytic method for oxidative hydroacylation with alcohols. Under photoirradiation and a catalytic amount of TBADT, different electrophiles (azodicarboxylates, -phenylmaleimide, benzylidenemalononitrile and phenyl vinyl sulfone) underwent hydroacylation with alcohols in good yields. The method was also applied to achieve a convenient synthesis of the anti-depressant drug moclobemide.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, China.
A three-component reaction of alkenyl thianthrenium salts, cyclopropan-1-ols and DABCO·(SO) under catalyst- and additive-free conditions, is accomplished. This sulfonylation with the insertion of sulfur dioxide works efficiently under very mild conditions, leading to a wide range of 1-substituted vinyl sulfones in moderate to good yields. In this protocol, the scope generality of alkenyl thianthrenium salts and cyclopropyl alcohols is demonstrated.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, the effect of freeze-thaw (F-T) processes on the mechanical and water absorption performance of citrate cross-linked chitosan/poly(vinyl alcohol) hydrogel pads was evaluated. An excellent cross-linking of 4 % (w/w) citrate was indicated by enhanced peak strength in Fourier-transform infrared spectroscopy and X-ray diffraction patterns, which was applied to the subsequent F-T process. The results in the deswelling rate, water contact angle, and relaxation time of samples exhibited a tendency to decrease and then increase with increasing F-T cycles, reaching a minimum of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!