Many transposable elements (TEs) contain transcription factor binding sites and are implicated as potential regulatory elements. However, TEs are rarely functionally tested for regulatory activity, which in turn limits our understanding of how TE regulatory activity has evolved. We systematically tested the human LTR18A subfamily for regulatory activity using massively parallel reporter assay (MPRA) and found AP-1- and CEBP-related binding motifs as drivers of enhancer activity. Functional analysis of evolutionarily reconstructed ancestral sequences revealed that LTR18A elements have generally lost regulatory activity over time through sequence changes, with the largest effects occurring owing to mutations in the AP-1 and CEBP motifs. We observed that the two motifs are conserved at higher rates than expected based on neutral evolution. Finally, we identified LTR18A elements as potential enhancers in the human genome, primarily in epithelial cells. Together, our results provide a model for the origin, evolution, and co-option of TE-derived regulatory elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712623 | PMC |
http://dx.doi.org/10.1101/gr.276863.122 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFMini Rev Med Chem
January 2025
Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.
View Article and Find Full Text PDFPlant Divers
November 2024
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
Salinity is a severe abiotic stress that affects plant growth and yield. Salinity stress activates jasmonate (JA) signaling in , but the underlying molecular mechanism remains to be elucidated. In this study, we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1 (COI1)-mediated JA signaling for this process.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China.
Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.
View Article and Find Full Text PDFiScience
January 2025
Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.
T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!