A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Immunomodulatory Mechanism by Which Vitamin D Influences Folate Receptor 3 Expression to Reduce COVID-19 Severity. | LitMetric

A Novel Immunomodulatory Mechanism by Which Vitamin D Influences Folate Receptor 3 Expression to Reduce COVID-19 Severity.

Anticancer Res

Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Department of Medicine, Boston University Medical Center, Boston, MA, U.S.A.

Published: October 2022

Background/aim: Identify potential mechanisms involving gene expression changes through which vitamin D supplementation could be beneficial in preventing adverse COVID-19 outcomes.

Materials And Methods: We performed a literature review to identify differentially expressed genes (DEGs) in the blood between severe and mild COVID-19 patients. We compared these with the top DEGs induced by 6 months of 10,000 IU/day vitamin D supplementation in healthy adults who were vitamin D deficient/insufficient. We used bioinformatic tools to look for a vitamin D response element (VDRE) in DEGs.

Results: FOLR3, RGS1, GPR84, and LRRN3 were the most significantly altered genes by 6 months of 10,000 IU/day vitamin D supplementation whose expression levels were also involved in COVID-19 severity. FOLR3 and GPR84 were found to be consistently up-regulated and RGS1 and LRRN3 consistently down-regulated in severe COVID-19 infection. FOLR3 and LRRN3 were down-regulated and RGS1 and GPR84 were up-regulated by 10,000 IU/day vitamin D supplementation.

Conclusion: FOLR3 and RGS1 are expressed in neutrophils and lymphocytes, respectively. Vitamin D supplementation may decrease the neutrophil-lymphocyte ratio as has been reported in patients admitted with severe symptoms. There is evidence that vitamin D directly influences the expression of the RGS1 gene through vitamin D receptor binding. A potential negative VDRE (nVDRE) in an intron of the FOLR3 gene was found, which was homologous with two known nVDREs. Combined with other transcription factor elements near the newly identified nVDRE, these observations may explain the mechanism by which vitamin D regulates these genes, thus influencing COVID-19 outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.16013DOI Listing

Publication Analysis

Top Keywords

vitamin supplementation
16
10000 iu/day
12
iu/day vitamin
12
vitamin
11
mechanism vitamin
8
covid-19 severity
8
months 10000
8
folr3 rgs1
8
rgs1 gpr84
8
covid-19
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!