Motion detection and correction for carotid MRI using a markerless optical system.

Magn Reson Imaging

Department of Bioengineering, University of Washington, Seattle, WA, United States of America. Electronic address:

Published: December 2022

Purpose: Motion related artifact is a challenge for MRI, especially when imaging regions like the carotid artery where complex motion (abrupt and bulk motion) may occur. This study aims to develop a non-contact motion detection and correction system for carotid MRI using a markerless optical tracking system.

Methods: The proposed markerless optical tracking system consisted of a cross-line laser, an MRI-compatible camera and plastic holders mounted inside the scanner bore. The neck motion of the subject can be captured by monitoring the change of the projected laser position in real-time. The system was used to correct both abrupt motion and bulk motion for carotid MRI. The abrupt motion (e.g. coughing) was compensated by discarding the corrupted k-space lines and re-estimating the missing lines using SPIRiT algorithm. The bulk motion was corrected by phase adjustment of k-space lines according to the measured 1D-translational bulk motion (along anterior-posterior direction) and optimized in-plane translation parameters. Ten volunteers underwent carotid MRI with real-time neck motion detection and retrospective motion correction. Artery sharpness, vessel wall thickness and overall image quality score were compared between the motion-corrupted image and motion-corrected images of different correction strategies.

Results: Both the abrupt motion and the bulk motion during carotid scanning were successfully detected and corrected. The results of ten volunteers demonstrated significant improvement in carotid artery sharpness, vessel wall thickness measurement, and overall image quality score using the proposed markerless optical tracking system and motion correction strategies.

Conclusion: The proposed markerless structured light based motion detection and correction system can sensitively detect both abrupt and bulk motion during carotid MR scans. By correcting for both abrupt and bulk motion, vessel wall delineation was improved in carotid MR images, which could potentially facilitate carotid plaque identification and atherosclerosis diagnosis in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2022.09.010DOI Listing

Publication Analysis

Top Keywords

bulk motion
28
motion
19
motion detection
16
carotid mri
16
markerless optical
16
detection correction
12
abrupt bulk
12
optical tracking
12
proposed markerless
12
abrupt motion
12

Similar Publications

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Using alternating currents (AC) can effectively prevent the formation of mineral crystals on surfaces in contact with super-saturated fluids, such as heat exchangers and pipes.
  • The study demonstrates that periodic charging and discharging of the electrical double layer (EDL) on titanium sheets in super-saturated CaCO solutions inhibits both crystal nucleation and growth due to enhanced ion migration.
  • Operating at 4 V and frequencies between 0.1-10 Hz results in over 96% reduction in turbidity and over 92% reduction in calcium carbonate coverage, showcasing a promising method for controlling mineral scaling in various industrial applications.
View Article and Find Full Text PDF

In biological systems such as cells, the macromolecules, which are anisotropic particles, diffuse in a crowded medium. In the present work, we have studied the diffusion of spheroidal particles diffusing between cylindrical obstacles by varying the density of the obstacles as well as the spheroidal particles. Analytical calculation of the free energy showed that the orientational vector of a single oblate particle will be aligned perpendicular, and a prolate particle will be aligned parallel to the symmetry axis of the cylindrical obstacles in equilibrium.

View Article and Find Full Text PDF

Density-dependent flow generation in active cytoskeletal fluids.

Sci Rep

December 2024

Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.

Article Synopsis
  • The actomyosin cytoskeleton, made up of actin fibers and myosin motors, creates contractile forces that influence various cellular movements, but its density-related behaviors are not well understood.
  • By adjusting the concentration of actomyosin cell extracts, researchers found that in cell-sized droplets, actin flows toward the center at a critical density, creating oscillatory motion.
  • The study suggests that changes in myosin activity can disrupt regular oscillatory flows, indicating that the dynamics of actomyosin flow are influenced by the balance between actin density and myosin forces.
View Article and Find Full Text PDF

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!