Channel catfish is an important species for aquaculture that exhibits a sexually dimorphic growth in favor of males. Genetic sexing and development of sex markers are crucial for the early identification of sex and of particular genotypes (YY males) for the production of all-male population in channel catfish aquaculture. In this study, we sequenced genomic DNA from pools of males and pools of females to better characterize the sex determining region (SDR) of channel catfish and to develop sex-specific markers for genetic sexing. Performing comparative analyses on male and female pooled genomic reads, we identified a large SDR (∼8.3 Mb) in the middle of channel catfish linkage group 4 (LG04). This non-recombining SDR contains a high-density of male-specific (Y chromosome) fixed single nucleotide polymorphisms (SNPs) along with ∼ 185 kb male-specific insertions or deletions. This SDR contains 95 annotated protein-encoding genes, including the recently reported putative channel catfish master sex determining (MSD) gene, breast cancer anti-estrogen resistance protein 1 (bcar1), located at one edge of the SDR. No sex-specific SNPs and/or indels were found in the coding sequence of bcar1, but one male-specific SNP was identified in its first intron. Based on this genomic information, we developed a PCR-based sex-specific genetic test. Genotyping results confirmed strong linkage between phenotypic sexes and the identified SDR in channel catfish. Our results confirm, using a Pool-Seq approach, that channel catfish is male heterogametic (XX-XY) with a large SDR on the LG04 sex chromosome. Furthermore, our genotyping primers can be used to identify XX, XY, and YY fish that will facilitate future research on sex determination and aquaculture applications in channel catfish.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146933DOI Listing

Publication Analysis

Top Keywords

channel catfish
36
sex determining
12
channel
9
catfish
9
determining region
8
genetic sexing
8
sdr channel
8
large sdr
8
sdr
7
sex
6

Similar Publications

Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods.

In Vitro Cell Dev Biol Anim

December 2024

Delta Research and Extension Center, Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS-38776, USA.

Channel catfish virus (CCV) poses a significant threat to catfish culture. Lack of effective vaccines and antiviral treatments necessitates effective disinfection strategies to mitigate its spread. In vitro trials indicated the virus to be inactivated at high temperatures, but was infectious at 40°C.

View Article and Find Full Text PDF

Complete genome sequence of sp. strain KCF3-3, isolated from the body surface of channel catfish, .

Microbiol Resour Announc

December 2024

Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan.

Here, we report the complete genome sequence of sp. strain KCF3-3, isolated from the body surface of channel catfish, . The assembly revealed a chromosome size of 5,623,437 bp with an estimated 4,939 open reading frames.

View Article and Find Full Text PDF

Hemolytic proteins are a major group of virulence factors in pathogenic Aeromonas hydrophila. Six genes encoding presumable hemolytic proteins were revealed from the genome of virulent A. hydrophila (vAh) that caused severe disease in channel catfish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!