The uterus and breasts are hormone-responsive tissues. Progesterone and estradiol regulate gonadotropin secretion, prepare the endometrium for implantation, maintain pregnancy, and regulate the differentiation of breast tissue. Dysregulation of these hormones causes endometriosis, endometrial cancer, and breast cancer, damaging the physical and mental health of women. Emerging evidence has shown that progesterone resistance or elevated progesterone activity is the primary hormonal substrate of these diseases. Since progesterone acts through its specific nuclear receptor, the abnormal expression of the progesterone receptor (PR) dysregulates progesterone function. This review discusses the regulatory mechanisms of PR expression in patients with endometriosis, and endometrial or breast cancer, including estrogen, polymorphisms, transcription factors, epigenetics, and the ubiquitin-proteasome system. (1) Estrogen promotes the expression of PRA (a PR isoform) mRNA and protein through the interaction of estrogen receptors (ERs) and Sp1 with half-ERE/Sp1 binding sites. ERs also affect the binding of Sp1 and Sp1 sites to promote the expression of PRB (another PR isoform)(2) PR polymorphisms, mainly PROGINS and + 331 G/A polymorphism, regulate PR expression by affecting DNA methylation and transcription factor binding. (3) The influence of epigenetic alterations on PR expression occurs through DNA methylation, histone modification, and microRNA. (4) As one of the main protein degradation pathways in vivo, the ubiquitin-proteasome system (UPS) regulates PR expression by participating in protein degradation. These mechanisms may provide new molecular targets for diagnosing and treating endometriosis, endometrial, and breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2022.106199DOI Listing

Publication Analysis

Top Keywords

endometriosis endometrial
16
breast cancer
16
ubiquitin-proteasome system
12
progesterone receptor
8
expression
8
endometrial cancer
8
cancer breast
8
estrogen polymorphisms
8
polymorphisms transcription
8
transcription factors
8

Similar Publications

Background: Endometriosis is characterized by the ectopic growth of endometrial-like cells, causing chronic pelvic pain, adhesions and impaired fertility in women of reproductive age. Usually, these lesions grow in the peritoneal cavity in a hypoxic environment. Hypoxia is known to affect gene expression and protein kinase (PK) activity.

View Article and Find Full Text PDF

Nanoceria as a non-steroidal anti-inflammatory drug for endometriosis theranostics.

J Control Release

January 2025

Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO 65211, USA. Electronic address:

Endometriosis, the growth of endometrial-like tissue outside the uterus, causes chronic pain and infertility in 10 % of reproductive-aged women worldwide. Unfortunately, no permanent cure exists, and current medical and surgical treatments offer only temporary relief. Endometriosis is a chronic inflammatory disease characterized by immune system dysfunction.

View Article and Find Full Text PDF

Endometriosis (EMS) is a chronic inflammatory disease frequently associated with infertility. N6-methyladenosine (m6A) methylation, the most common form of methylation in eukaryotic mRNAs, has gained attention in the study of female reproductive diseases, including EMS and infertility. This study aimed to investigate the role of m6A regulators in EMS-related infertility.

View Article and Find Full Text PDF

Objective: Deep endometriosis is now referred to as adenomyosis externa, whereas adenomyosis is once known as endometriosis interna. Lysine-specific histone demethylase 1A (KDM1A, commonly LSD1) is a lysine demethylase that targets histone and non-histone proteins. This study aimed to assess how KDM1A affects the migration, invasion, and proliferation of adenomyosis-derived endometrial stromal cells (ESCs).

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!