Cabotegravir (CAB) is an integrase strand transfer inhibitor (INSTI) formulated as a long-acting injectable drug approved for pre-exposure prophylaxis and use with a long acting rilpivirine formulation for therapy in patients with virological suppression. However, there has been no comprehensive review of the genetic mechanisms of CAB resistance. Studies reporting the selection of drug resistance mutations (DRMs) by CAB and the results of in vitro CAB susceptibility testing were reviewed. The impact of integrase mutations on CAB susceptibility was assessed using regularized regression analysis. The most commonly selected mutations in the 24 persons developing virological failure while receiving CAB included Q148R (n = 15), N155H (n = 7), and E138K (n = 5). T97A, G118R, G140 A/R/S, and R263K each developed in 1-2 persons. With the exception of T97A, G118R, and G140 A/R, these DRMs were also selected in vitro while G140R was selected in the SIV macaque model. Although these DRMs are similar to those occurring in persons receiving the related INSTI dolutegravir, Q148R was more likely to occur with CAB while G118R and R263K were more likely to occur with dolutegravir. Regularized regression analysis identified 14 DRMs significantly associated with reduced CAB susceptibility including six primary DRMs which reduced susceptibility on their own including G118R, Q148 H/K/R, N155H, and R263K, and eight accessory DRMs including M50I, L74 F/M, T97A, E138K, and G140 A/C/S. Isolates with Q148 H/K/R in combination with L74M, E138 A/K, G140 A/S, and N155H often had >10-fold reduced CAB susceptibility. M50I, L74M, and T97A are polymorphic mutations that alone did not appear to increase the risk of virological failure in persons receiving a CAB-containing regimen. Careful patient screening is required to prevent CAB from being used during active virus replication. Close virological monitoring is required to minimize CAB exposure to active replication to prevent the emergence of DRMs associated with cross-resistance to other INSTIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015861 | PMC |
http://dx.doi.org/10.1016/j.antiviral.2022.105427 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!