The functional mass of insulin-secreting pancreatic β-cells expands to maintain glucose homeostasis in the face of nutrient excess, in part via replication of existing β-cells. Type 2 diabetes appears when these compensatory mechanisms fail. Nutrients including glucose and fatty acids are important contributors to the β-cell compensatory response, but their underlying mechanisms of action remain poorly understood. We investigated the transcriptional mechanisms of β-cell proliferation in response to fatty acids. Isolated rat islets were exposed to 16.7 mmol/L glucose with or without 0.5 mmol/L oleate (C18:1) or palmitate (C16:0) for 48 h. The islet transcriptome was assessed by single-cell RNA sequencing. β-Cell proliferation was measured by flow cytometry. Unsupervised clustering of pooled β-cells identified different subclusters, including proliferating β-cells. β-Cell proliferation increased in response to oleate but not palmitate. Both fatty acids enhanced the expression of genes involved in energy metabolism and mitochondrial activity. Comparison of proliferating versus nonproliferating β-cells and pseudotime ordering suggested the involvement of reactive oxygen species (ROS) and peroxiredoxin signaling. Accordingly, N-acetyl cysteine and the peroxiredoxin inhibitor conoidin A both blocked oleate-induced β-cell proliferation. Our study reveals a key role for ROS signaling through peroxiredoxin activation in oleate-induced β-cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797324PMC
http://dx.doi.org/10.2337/db22-0121DOI Listing

Publication Analysis

Top Keywords

β-cell proliferation
24
fatty acids
12
single-cell rna
8
rna sequencing
8
reactive oxygen
8
oxygen species
8
oleate-induced β-cell
8
β-cell
7
proliferation
6
β-cells
5

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!