Quantization-aware training for low precision photonic neural networks.

Neural Netw

Computational Intelligence and Deep Learning Group, Dept. of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece. Electronic address:

Published: November 2022

Recent advances in Deep Learning (DL) fueled the interest in developing neuromorphic hardware accelerators that can improve the computational speed and energy efficiency of existing accelerators. Among the most promising research directions towards this is photonic neuromorphic architectures, which can achieve femtojoule per MAC efficiencies. Despite the benefits that arise from the use of neuromorphic architectures, a significant bottleneck is the use of expensive high-speed and precision analog-to-digital (ADCs) and digital-to-analog conversion modules (DACs) required to transfer the electrical signals, originating from the various Artificial Neural Networks (ANNs) operations (inputs, weights, etc.) in the photonic optical engines. The main contribution of this paper is to study quantization phenomena in photonic models, induced by DACs/ADCs, as an additional noise/uncertainty source and to provide a photonics-compliant framework for training photonic DL models with limited precision, allowing for reducing the need for expensive high precision DACs/ADCs. The effectiveness of the proposed method is demonstrated using different architectures, ranging from fully connected and convolutional networks to recurrent architectures, following recent advances in photonic DL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2022.09.015DOI Listing

Publication Analysis

Top Keywords

neural networks
8
neuromorphic architectures
8
photonic models
8
photonic
6
quantization-aware training
4
training low
4
precision
4
low precision
4
precision photonic
4
photonic neural
4

Similar Publications

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Background: Individuals with hearing impairments may face hindrances in health care assistance, which may significantly impact the prognosis and the incidence of complications and iatrogenic events. Therefore, the development of automatic communication systems to assist the interaction between this population and health care workers is paramount.

Objective: This study aims to systematically review the evidence on communication systems using human-computer interaction techniques developed for deaf people who communicate through sign language that are already in use or proposed for use in health care contexts and have been tested with human users or videos of human users.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!