Resveratrol (RES), a polyphenol with strong antioxidant capacity but poor bioavailability and light instability, urgently needs an effective delivery technique to overcome its drawbacks. As it is a highly biocompatible delivery system, liposomes were used to carry RES to form resveratrol-encapsulated liposomes (RES-LPS). Results showed that the diameter of RES-LPS was 333 ± 50 nm and the encapsulation efficiency was 84.69 ± 0.02 %, with a spherical shape and double-layered structure. Morphology showed that RES-LPS, could maintain an intact membrane structure during stomach digestion, as well as while under hydrolysis, mimicking intestinal conditions, before releasing RES. Moreover, Caco-2 cells uptake study also demonstrated that the digesta of RES-LPS resulted in a better cell absorption efficiency and a stronger ability to reduce reactive oxygen species when compared with free RES. Thus, these results indicate that liposomes play a key role in improving the bioavailability of RES, demonstrating the promising role of liposomes as a delivery system for food supplements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.133943 | DOI Listing |
Food Chem
March 2023
School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China. Electronic address:
Resveratrol (RES), a polyphenol with strong antioxidant capacity but poor bioavailability and light instability, urgently needs an effective delivery technique to overcome its drawbacks. As it is a highly biocompatible delivery system, liposomes were used to carry RES to form resveratrol-encapsulated liposomes (RES-LPS). Results showed that the diameter of RES-LPS was 333 ± 50 nm and the encapsulation efficiency was 84.
View Article and Find Full Text PDFInt J Mol Sci
December 2021
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
The development of drug delivery systems for use in the treatment of cardiovascular diseases is an area of great interest. We report herein on an evaluation of the therapeutic potential of a myocardial mitochondria-targeting liposome, a multifunctional envelope-type nano device for targeting pancreatic β cells (β-MEND) that was previously developed in our laboratory. Resveratrol (RES), a natural polyphenol compound that has a cardioprotective effect, was encapsulated in the β-MEND (β-MEND (RES)), and its efficacy was evaluated using rat myocardioblasts (H9c2 cells).
View Article and Find Full Text PDFJ Mater Chem B
January 2020
Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
Resveratrol (RES) is a naturally occurring and effective drug for tumor prevention and treatment. However, its low levels of aqueous solubility, stability, and poor bioavailability limit its application, especially when used as a free drug. In this study, RES was loaded into peptide and sucrose liposomes (PSL) to enhance the physico-chemical properties of RES and exploit RES delivery mediated by liposomes to effectively treat breast cancer.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2016
School of Pharmacy, The University of Queensland, 20 Cornwall St, Brisbane, Australia; Mucosal Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia. Electronic address:
Despite the known anticancer potential of resveratrol, its clinical applications are often hindered by physicochemical limitations such as poor solubility and stability. The encapsulation of resveratrol in formulations such as polymeric nanoparticles and liposomes has shown limited success. This study aimed to develop and optimize a novel drug carrier by co-encapsulating pristine resveratrol alongside cyclodextrin-resveratrol inclusion complexes in the lipophilic and hydrophilic compartments of liposomes, respectively by using a novel dual carrier approach.
View Article and Find Full Text PDFResveratrol (3,4',5-trihydroxystilbene) is a plant-derived polyphenolic trans-stilbenoid, which exerts multifaceted antiaging effects. Here, we propose a novel delivery system for resveratrol, which significantly increases its cellular uptake into aged cells. Combination of resveratrol with a positively charged lipid component to "conventional" liposomes converts these lipid vesicles to a robust fusogenic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!