Shipping regulations lead to large reduction in cloud perturbations.

Proc Natl Acad Sci U S A

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom.

Published: October 2022

Global shipping accounts for 13% of global emissions of SO, which, once oxidized to sulfate aerosol, acts to cool the planet both directly by scattering sunlight and indirectly by increasing the albedo of clouds. This cooling due to sulfate aerosol offsets some of the warming effect of greenhouse gasses and is the largest uncertainty in determining the change in the Earth's radiative balance by human activity. Ship tracks-the visible manifestation of the indirect of effect of ship emissions on clouds as quasi-linear features-have long provided an opportunity to quantify these effects. However, they have been arduous to catalog and typically studied only in particular regions for short periods of time. Using a machine-learning algorithm to automate their detection we catalog more than 1 million ship tracks to provide a global climatology. We use this to investigate the effect of stringent fuel regulations introduced by the International Maritime Organization in 2020 on their global prevalence since then, while accounting for the disruption in global commerce caused by COVID-19. We find a marked, but clearly nonlinear, decline in ship tracks globally: An 80% reduction in SO[Formula: see text] emissions causes only a 25% reduction in the number of tracks detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565328PMC
http://dx.doi.org/10.1073/pnas.2206885119DOI Listing

Publication Analysis

Top Keywords

sulfate aerosol
8
ship tracks
8
global
5
shipping regulations
4
regulations lead
4
lead large
4
large reduction
4
reduction cloud
4
cloud perturbations
4
perturbations global
4

Similar Publications

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6-202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%-60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

This study intended to evaluate the clinical efficacy and safety of colistin sulfate aerosol inhalation in combination with ceftazidime-avibactam for the treatment of pulmonary carbapenem-resistant (CRKP) infection during the peri-operative period of liver transplantation. A retrospective analysis was designed to investigate 52 patients who developed pulmonary CRKP infection after liver transplantation between December 1, 2019, and November 30, 2022. On the basis of whether they received colistin sulfate aerosol inhalation, the patients were divided into the treatment group ( = 29) and the control group ( = 23).

View Article and Find Full Text PDF

Spatio-temporal analysis of extreme air pollution and risk assessment.

J Environ Manage

January 2025

Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India. Electronic address:

Extreme air pollution poses global health and environmental threats, necessitating robust policy interventions. This study first analyses the surface mass concentration of major aerosols (such as black carbon, organic carbon, dust, sea salts, and sulphates) to estimate global PM concentrations from 1980 to 2023. The developed model-estimated PM database was validated against data from 526 cities worldwide, showing strong accuracy, with RMSE, r, and R values of 7.

View Article and Find Full Text PDF

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!