Cross-scale excitability in networks of quadratic integrate-and-fire neurons.

PLoS Comput Biol

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.

Published: October 2022

From the action potentials of neurons and cardiac cells to the amplification of calcium signals in oocytes, excitability is a hallmark of many biological signalling processes. In recent years, excitability in single cells has been related to multiple-timescale dynamics through canards, special solutions which determine the effective thresholds of the all-or-none responses. However, the emergence of excitability in large populations remains an open problem. Here, we show that the mechanism of excitability in large networks and mean-field descriptions of coupled quadratic integrate-and-fire (QIF) cells mirrors that of the individual components. We initially exploit the Ott-Antonsen ansatz to derive low-dimensional dynamics for the coupled network and use it to describe the structure of canards via slow periodic forcing. We demonstrate that the thresholds for onset and offset of population firing can be found in the same way as those of the single cell. We combine theoretical analysis and numerical computations to develop a novel and comprehensive framework for excitability in large populations, applicable not only to models amenable to Ott-Antonsen reduction, but also to networks without a closed-form mean-field limit, in particular sparse networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560555PMC
http://dx.doi.org/10.1371/journal.pcbi.1010569DOI Listing

Publication Analysis

Top Keywords

excitability large
12
quadratic integrate-and-fire
8
large populations
8
excitability
5
cross-scale excitability
4
networks
4
excitability networks
4
networks quadratic
4
integrate-and-fire neurons
4
neurons action
4

Similar Publications

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

With the advent of the 5G era, high-precision localization based on mobile communication networks has become a research hotspot, playing an important role in indoor emergency rescue in shopping malls, smart factory management and tracking, as well as precision marketing. However, in complex environments, non-line-of-sight (NLOS) propagation reduces the measurement accuracy of 5G signals, causing large deviations in position solving. In order to obtain high-precision position information, it is necessary to recognize the propagation state of the signal before distance measurement or angle measurement.

View Article and Find Full Text PDF

Calliphoridae, or blow flies, are of much ecological and practical importance given their roles in decompositional ecology, medical and veterinary myiasis, and forensic entomology. As ephemeral and rapidly developing species, adults are frequently not present for identification, but puparia (the remaining outer integument of the third instar larvae) are frequently found. These heavily sclerotized remains are stable in the environment but they are of a conservative character.

View Article and Find Full Text PDF

A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.

View Article and Find Full Text PDF

Roadmap for Designing Donor-π-Acceptor Fluorophores in UV-Vis and NIR Regions: Synthesis, Optical Properties and Applications.

Biomolecules

January 2025

Department of Chemistry, Molecular Basis of Disease, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA.

Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the 'push-pull' system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!