Campylobacteriosis is still the most commonly reported zoonosis in the European Union causing gastrointestinal disease in humans. One of the most common sources for these food-borne infections is broiler meat. Interactions between (.) and the intestinal microbiota might influence colonization in chickens. The aim of the present study was to gain further knowledge about exclusive interactions of the host microbiota with in -specific phage-free chickens under standardized conditions and special biosafety precautions.Therefore, 12 artificially infected ( inoculum with a challenge dose of 7.64 log c.f.u.) and 12 control chickens of the breed Ross 308 were kept under special biosafety measures in an animal facility. At day 42 of life, microbiota studies were performed on samples of caecal digesta and mucus. No -specific phages were detected by real-time PCR analysis of caecal digesta of control or artificially infected chickens. Amplification of the 16S rRNA gene was performed within the hypervariable region V4 and subsequently sequenced with Illumina MiSeq platform. R (version 4.0.2) was used to compare the microbiota between -negative and -positive chickens. The factor chickens' infection status contributed significantly to the differences in microbial composition of mucosal samples, explaining 10.6 % of the microbiota variation (=0.007) and in digesta samples, explaining 9.69 % of the microbiota variation (=0.015). The strongest difference between -non-infected and -infected birds was observed for the family whose presence in -infected birds could not be demonstrated. Further, several genera of the family appeared to be depressed in its abundance due to infection. A negative correlation was found between R-7 group and in -colonised chickens, both genera potentially competing for substrate. This makes R-7 group highly interesting for further studies that aim to find control options for infections and assess the relevance of this finding for chicken health and colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676049PMC
http://dx.doi.org/10.1099/mgen.0.000874DOI Listing

Publication Analysis

Top Keywords

-specific phages
8
special biosafety
8
artificially infected
8
caecal digesta
8
samples explaining
8
microbiota variation
8
-infected birds
8
r-7 group
8
microbiota
7
chickens
7

Similar Publications

Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections.

Infect Dis Rep

November 2024

Drug Discovery and Development, Creative Biolabs Inc., Shirley, NY 11967, USA.

Background: Phage therapy, a treatment utilizing bacteriophages to combat bacterial infections, is gaining attention as a promising alternative to antibiotics, particularly for managing antibiotic-resistant bacteria. This study aims to provide a comprehensive review of phage therapy by examining its safety, efficacy, influencing factors, future prospects, and regulatory considerations. The study also seeks to identify strategies for optimizing its application and to propose a systematic framework for its clinical implementation.

View Article and Find Full Text PDF

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant pathogens necessitates alternative therapies for treating microbial infections, especially in the oral cavity and upper respiratory tract. Our team has developed Phage Pastilles, a controlled-release formulation containing bacteriophages that target common pathogens, including Streptococcus pyogenes, Streptococcus salivarius, Staphylococcus aureus, Enterococcus faecalis, and E. coli.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!