A strategy was developed for the visible-light-induced photocatalytic synthesis of dihydrochalcone via the deoxygenation and coupling of benzoic acid derivatives with alkenes using diphenyl sulfide as the O-transfer reagent. Under mild photoredox conditions, a series of dihydrochalcone derivatives were produced in moderate to good yields. A mechanism for the visible-light-induced free-radical coupling was proposed on the basis of the control experiments. The protocol provides a new strategy the generation of acyl radicals from carboxylic acids and the synthesis of dihydrochalcones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c02538DOI Listing

Publication Analysis

Top Keywords

coupling benzoic
8
benzoic acid
8
acid derivatives
8
derivatives alkenes
8
visible-light-induced acylative
4
acylative coupling
4
alkenes dihydrochalcones
4
dihydrochalcones strategy
4
strategy developed
4
developed visible-light-induced
4

Similar Publications

Herein, we report an efficient [Ru(η-CH)Cl] catalyzed oxidative C-H alkenylation of benzoic acid in the green solvent water. A regioselective olefination of benzoic acid with functionalized alkenes like styrene and acrylate was established at a very mild condition of 60 °C temperature and in an aqueous medium. In contrast to the cyclization of the carboxylic group, a selective -olefination product of benzoic acid was observed with the acrylate.

View Article and Find Full Text PDF

Nonribosomal peptides (NRPs), one of the most widespread secondary metabolites in nature, with therapeutically significant activities, are biosynthesized by modular nonribosomal peptide synthetases (NRPSs). Aryl acids contribute to the structural diversity of NRPs as well as nonproteinogenic amino acids and keto acids. We previously confirmed that a single Asn-to-Gly substitution in the 2,3-dihydroxybenzoic acid-activating adenylation (A) domain EntE involved in enterobactin biosynthesis accepts monosubstituted benzoic acid derivatives with nitro, cyano, bromo, and iodo functionalities at the 2 or 3 positions.

View Article and Find Full Text PDF

Electrocatalytic benzyl alcohol oxidation reaction (EBOR) is a feasible way to produce high-value-added benzaldehyde and benzoic acid. However, the performance of catalyst usually suffers from the high energy barrier for the O─O bonding step resulting in sluggish process. Herein, lattice oxygen activation strategy is proposed by the electrochemical de-lithiation of LiNiO to catalyze the EBOR through direct O─O bonding to significantly enhance the EBOR performance.

View Article and Find Full Text PDF

Six iridium complexes were designed and studied using the DFT approach, (ppy)Ir(pic) (1), (fppy)Ir(pic) (2), (ppy)Ir(tmd) (3), (fppy)Ir(tmd) (4), (ppy)Ir(tpip) (5) and (fppy)Ir(tpip) (6). Here ppy denotes phenylpyridine, fppy denotes 2-(2,3,4,5-tetrafluorophenyl) pyridine, pic denotes benzoic acid, tmd denotes 5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one and tpip denotes tetraphenylimido-diphosphinate. The geometries, absorptions, emissions, frontier molecular orbitals, and spin-orbit coupling (SOC) constants of the 6 complexes were evaluated.

View Article and Find Full Text PDF

2D/2D Hydrogen-Bonded Organic Frameworks/Covalent Organic Frameworks S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution.

Angew Chem Int Ed Engl

November 2024

Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.

Hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential for application in photocatalysis. However, the low efficiency of electron-hole separation and limited stability inhibit their practical utilization in photocatalytic hydrogen evolution from water splitting. Herein, the novel dual-pyrene-base supramolecular HOF/COF 2D/2D S-scheme heterojunction between HOF-HTBAPy (Py-HOF, HTBAPy represents the 1,3,6,8-tetrakis (p-benzoic acid) pyrene) and Py-COF was successfully established using a rapid self-assembly solution dispersion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!