Dynamic high pressure treatment (DHPT) either by high pressure homogenization or microfluidisation, is an emerging concept used in the food industry for new products development through macromolecules modifications in addition to simple mixing and emulsification action. Mechanistic understanding of droplets breakup during high pressure homogenization is used to understand how these compact and high molecular weight-sized globular plant proteins are affected during DHPTs. Plant protein needs to be functionalized for advanced use in food formulation. DHPTs brought changes in plant proteins' secondary, tertiary, and quaternary structures through alterations in intermolecular and intramolecular interactions, sulfhydryl groups, and disulfide bonds. These structural changes in plant proteins affected their functional and physicochemical properties like solubility, oil and water holding capacity, gelation, emulsification, foaming, and rheological properties. These remarkable changes made utilization of this concept in novel food system applications like in plant-based dairy analogues. Overall, this review provides a comprehensive and critical understanding of DHPTs on their mechanistic and transport approaches for droplet breakup, structural and functional modification of plant macromolecules. This article also explores the potential of DHPT for formulating plant-based dairy analogues to meet healthy and sustainable food consumption needs. HIGHLIGHTSIt critically reviews high pressure homogenization (HPH) and microfluidisation (DHPM).It explores the mechanistic and transport phenomena approaches of HPH and DHPMHPH and DHPM can induce conformational and structural changes in plant proteins.Improvement in the functional properties of HPH and DHPM treated plant proteins.HPH and DHPM are potentially applicable for plant based dairy alternatives food system.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2022.2125930DOI Listing

Publication Analysis

Top Keywords

high pressure
20
pressure homogenization
12
changes plant
12
plant
9
dynamic high
8
phenomena approaches
8
plant protein
8
plant proteins
8
structural changes
8
food system
8

Similar Publications

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Background: Hemoglobin (Hb) Hekinan is a prevalent α-globin variant frequently missed in thalassemia screening centers using high-performance liquid chromatography (HPLC) or capillary electrophoresis. This study aims to investigate the hematological and molecular characteristics of Hb Hekinan in a large cohort.

Methods: Hb variants were identified using isoelectric focusing (IEF) and HPLC.

View Article and Find Full Text PDF

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

Most biomedical research on animals is based on the handful of the so-called standard model organisms, i.e. laboratory mice, rats or , but the keys to some important biomedical questions may simply not be found in these.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!