The development of low-cost catalysts for the water oxidation reaction (WOR) is important for solving the bottleneck issues in water splitting and benefits the widespread utilization of renewable energy sources. Herein, four cobalt(II) triazolylpyridine complexes, namely [Co(DTE)(HO)](ClO)·CHCOCH (1), [Co(DTE)Cl]·2CHOH (2) (DTE = (1-(2-acetoxymethyl)-4-(2-pyridyl)1,2,3-triazole), [Co(DTEL)(CHOH)](ClO) (3), and [Co(DTEL)Cl]·HO (4) (DTEL = (1-(2-hydroxy)-4-(2-pyridyl)1,2,3-triazole), were synthesized and characterized. The crystal structures of 1-3 were determined by X-ray single crystal diffraction analysis. The electrocatalytic water oxidation by 1-4 was studied in 0.1 M NaOAc-HOAc solutions. Complexes 1-4 were single-site molecular catalysts for the WOR under near-neutral conditions. The overpotentials for the WOR were 440 mV and 480 mV. The faradaic efficiencies were 77-92%. The rate constants were 0.21-0.96 s. The catalytic activities were affected by the pendant groups of DTE and DTEL. Complexes with DTE (1 and 2) showed better activities than those with DTEL (3 and 4). Moreover, complexes 1-4 adsorbed on indium-doped tin oxide (ITO) and glassy carbon electrode surfaces were active for the WOR. A mechanism was proposed for the WOR catalyzed by 1-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01780f | DOI Listing |
Methods Mol Biol
December 2024
The James Hutton Institute, Dundee, UK.
We describe a protocol to amplify DNA barcodes of known and unknown taxa of Phytophthora and related plant pathogenic oomycetes from a range of environments. The methods focus on sampling pathogen propagules from water using in situ sampling and filtration equipment and buffers that enable efficient storage and DNA extraction for later downstream processing.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!