To compare the difference between liposome (LP) and microemulsion (ME) in delivering ibuprofen (IBU) transdermally and explore relative mechanism. IBU-LP and IBU-ME were prepared by ethanol injection and spontaneous emulsification, respectively. The percutaneous delivery was evaluated using Franz diffusion cells. Fourier transform infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC), activation energy (Ea), and confocal laser scanning microscopy (CLSM) were used to investigate the transdermal mechanism. The particle size and encapsulation efficiency were 228.00 ± 8.60 nm, 86.68 ± 1.43%(w/w) for IBU-LP, and 56.74 ± 7.11 nm, 91.08 ± 3.27%(w/w) for IBU-ME. Percutaneous study showed that formulations enhanced permeation and drug retention in the skin. FTIR and DSC showed that the permeation occurred due to the interaction of the formulations with the lipid bilayer and the protein. The decrease in Ea (1.506 and 0.939 kcal/mol) revealed that the stratum corneum (SC) lipid bilayers were significantly disrupted and this destructive effect of IBU-LP was stronger. IBU-LP was superior to IBU-ME in the aspects of transdermal delivery of IBU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02652048.2022.2131920 | DOI Listing |
Food Sci Biotechnol
January 2025
Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160014 India.
Nanotechnology has gained recognition as the next uprising technology in numerous sectors, together with food industry and agriculture. Diminution of particle size to nanoscale range enhances the surface area, eventually surface-to-volume ratio, subsequently enhances their reactivity by several times, modifying optical, electrical, and mechanical features. Nanotechnology can also modify the aqueous solubility, thermal stability, and bioavailability in oral delivery of bioactive nutraceuticals.
View Article and Find Full Text PDFJ Drug Target
January 2025
School of Pharmacy, Wannan Medical College, Wuhu, China.
Int J Pharm
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes.
View Article and Find Full Text PDFPharmaceutics
October 2024
Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release.
View Article and Find Full Text PDFAAPS PharmSciTech
November 2024
Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
The complexity of treating neurological diseases has meant that new strategies have had to be developed to deliver drugs to the brain more efficiently and safely. Intranasal drug delivery is characterized by its ease of administration, safety, and rapid delivery directly from the nose to the brain. Several strategies have been developed to improve the delivery of drugs to the brain via nasal administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!