Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
rimer ndependent of uA4 involved in ranscription nteractions with ucleosomes (TINTIN) is an integral module of the essential yeast lysine acetyltransferase complex NuA4 that plays key roles in transcription regulation and DNA repair. Composed of Eaf3, Eaf5, and Eaf7, TINTIN mediates targeting of NuA4 to chromatin through the chromodomain-containing subunit Eaf3 that is shared with the Rpd3S histone deacetylase complex. How Eaf3 mediates chromatin interaction in the context of TINTIN and how is it different from what has been observed in Rpd3S is unclear. Here, we reconstituted recombinant TINTIN and its subassemblies and characterized their biochemical and structural properties. Our coimmunoprecipitation, AlphaFold2 modeling, and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses revealed that the Eaf3 MRG domain contacts Eaf7 and this binding induces conformational changes throughout Eaf3. Nucleosome-binding assays showed that Eaf3 and TINTIN interact non-specifically with the DNA on nucleosomes. Furthermore, integration into TINTIN enhances the affinity of Eaf3 toward nucleosomes and this improvement is a result of allosteric activation of the Eaf3 chromodomain. Negative stain electron microscopy (EM) analysis revealed that TINTIN binds to the edge of nucleosomes with increased specificity in the presence of H3K36me3. Collectively, our work provides insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670870 | PMC |
http://dx.doi.org/10.1128/mcb.00170-22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!