Femtosecond laser deep lamellar keratoplasty.

Indian J Ophthalmol

Northwest Eye Surgeons, Seattle, WA, USA.

Published: October 2022

We aimed to develop a novel and effective technique for creating a smooth deep lamellar dissection of the cornea using a femtosecond (FS) laser for deep anterior lamellar keratoplasty (DALK), we conducted a retrospective eye bank study. Thirteen fresh human corneas were mounted on an artificial anterior chamber, and deep lamellar cuts were made with a 500-kHz VisuMax FS laser at a level of 50-80 μm anterior to the Descemet's membrane (DM). A posterior diameter of 8 mm with a side cut angle of 110° was used for the anterior penetrating side cut. The anterior lamellar tissue was bluntly dissected. The residual posterior stromal beds and side cuts were examined with microscopy and intraoperative optical coherence tomography (OCT) and post-cut endothelial cell evaluations. All corneas revealed a smooth residual posterior stromal bed without any visible irregularities or ridges by microscopy and OCT imaging. Six corneas were suitable for post-cut endothelial cell evaluation 2 days after laser cut, with no significant endothelial cell loss post-laser and blunt dissection of the posterior stroma. FS laser deep lamellar keratoplasty utilizing an ultrafast laser to produce a smooth deep stromal dissection followed by blunt dissection and removal of the anterior stromal tissue yields a consistent and smooth residual stromal bed. The creation of a smooth lamellar dissection in the deep posterior cornea may result in more consistent DALK without the need for air bubble or manual baring of DM that has the risk for DM perforation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789870PMC
http://dx.doi.org/10.4103/ijo.IJO_391_22DOI Listing

Publication Analysis

Top Keywords

deep lamellar
16
laser deep
12
lamellar keratoplasty
12
endothelial cell
12
femtosecond laser
8
smooth deep
8
lamellar dissection
8
anterior lamellar
8
side cut
8
residual posterior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!