Brevibacillus thermoruber strain Nabari was isolated from compost and identified based on 16 S rRNA gene sequencing and DNA-DNA hybridization using B. thermoruber DSM 7064 as the standard, despite some differences in their physiological and structural characteristics. When B. thermoruber Nabari was cultivated on various solid media containing 1.5% agar at 60°C, it rapidly propagated over the entire plate. In particular, on R2A-agar medium, it formed fine dendritic colonies. Macroscopic and microscopic observations of peripheral regions of the colonies indicated that the dendritic patterns were formed by bacterial swarming of some of the cells; large flows of bacterial cell populations were observed in the peripheral regions of the dendritic colonies. The cells were highly flagellated, but no extreme elongation of cells was observed. When B. thermoruber Nabari cells were cultivated at 37°C on R2A-agar plates, most colonies were nonmotile, but some colonies were motile. For example, a wandering colony moved on the plate and split into two, and then they collided to become one again. Additionally, a simple incubation system was devised to record the movement of colonies at high temperatures in this study while protecting the cameras from thermal damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.202200445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!