Vascularization is a crucial step during musculoskeletal tissue regeneration via bioengineered constructs or grafts. Functional vasculature provides oxygen and nutrients to the graft microenvironment, facilitates wound healing, enhances graft integration with host tissue, and ensures the long-term survival of regenerating tissue. Therefore, imaging de novo vascularization (i.e., angiogenesis), changes in microvascular morphology, and the establishment and maintenance of perfusion within the graft site (i.e., vascular microenvironment or VME) can provide essential insights into engraftment, wound healing, as well as inform the design of tissue engineering (TE) constructs. In this review, we focus on state-of-the-art imaging approaches for monitoring the VME in craniofacial TE applications, as well as future advances in this field. We describe how cutting-edge in vivo and ex vivo imaging methods can yield invaluable information regarding VME parameters that can help characterize the effectiveness of different TE constructs and iteratively inform their design for enhanced craniofacial bone regeneration. Finally, we explicate how the integration of novel TE constructs, preclinical model systems, imaging techniques, and systems biology approaches could usher in an era of "image-based tissue engineering."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9829486 | PMC |
http://dx.doi.org/10.1152/ajpcell.00195.2022 | DOI Listing |
The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific overexpression mutants.
View Article and Find Full Text PDFCancer Drug Resist
December 2024
Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O) and nitric oxide (NO).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People's Republic of China.
Background: Ovarian cancer is difficult to detect in its early stages, and it has a high potential for invasion and metastasis, along with a high rate of recurrence. These factors contribute to the poor prognosis and reduced survival times for patients with this disease. The effectiveness of conventional chemoradiotherapy remains limited.
View Article and Find Full Text PDFCancer Discov
January 2025
Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
The exponential growth of the cancer neuroscience field has shown that the host's immune, vascular, and nervous systems communicate with and influence each other in the tumor microenvironment, dictating the cancer malignant phenotype. Unraveling the nervous system's contributions toward this phenotype brings us closer to cancer cures. In this review, we summarize the peripheral nervous system's contributions to cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!