A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals. | LitMetric

Objectives: Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.

Methods: We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.

Results: Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.

Conclusion: Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000003286DOI Listing

Publication Analysis

Top Keywords

machine learning
8
hypertensive normotensive
8
random forest
8
forest model
8
hypertension
5
artificial intelligence-based
4
intelligence-based opportunistic
4
opportunistic screening
4
screening detection
4
detection arterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!