Antisense RNA technology is a strategy for the treatment of Duchenne muscular dystrophy (DMD), a progressive and universally fatal X-linked neuromuscular disease caused by frameshift mutations in the gene encoding dystrophin. Phosphorodiamidate morpholino oligomers (PMOs) are an antisense RNA platform that is used clinically in patients with DMD to facilitate exon skipping and production of an internally truncated, yet functional, dystrophin protein. Peptide-conjugated PMOs (PPMOs) are a next-generation platform in which a cell-penetrating peptide is conjugated to the PMO backbone, with the goal of increasing cellular uptake. RC-1001 is a PPMO that contains a proprietary cell-penetrating peptide and targets the mutation in mice. It was evaluated in mice for exon 23 skipping, dystrophin production, and functional efficacy. Single-dose RC-1001 dose dependently increased exon skipping and dystrophin protein levels in striated muscle and is associated with improvements in muscle function. Dystrophin protein levels were durable for 60 days. Three doses, each given 1 month apart, increased exon skipping to 99% in quadriceps and 43% in heart, with dystrophin protein levels at 39% and 9% of wild type, respectively. These findings support clinical development of PPMO therapies for the treatment of DMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483789 | PMC |
http://dx.doi.org/10.1016/j.omtn.2022.08.019 | DOI Listing |
Nat Neurosci
January 2025
Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.
View Article and Find Full Text PDFGene
January 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820 USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820 USA. Electronic address:
The alternative splicing of a gene results in distinct transcript isoforms that can result in proteins that differ in function. Alternative splicing processes are prevalent in the brain, have varying incidence across brain regions, and can present sexual dimorphism. Exposure to opiates and other substances of abuse can also alter the type and incidence of the splicing process and the relative abundance of the isoforms produced.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
Background: Autosomal recessive congenital ichthyosis (ARCI) is a group of genetic skin disorders characterized by abnormal keratinization, leading to significant health issues and reduced quality of life. ARCI encompasses harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While all ARCI genes are linked to LI and CIE, HI is specifically associated with severe mutations in the gene.
View Article and Find Full Text PDFPathologica
October 2024
Department of Public Health, University of Naples Federico II, Naples, Italy.
Objective: ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations represent fundamental predictive biomarkers for advanced non-small cell lung cancer (NSCLC) patients to ensure the best treatment choice. In this scenario, RNA-based NGS approach has emerged as an extremely useful tool for detecting these alterations. In this study, we report our NGS molecular records on ALK, ROS1, NTRK, and RET gene fusions and MET exon 14 skipping alterations detected by using a narrow RNA-based NGS panel, namely SiRe fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!